How to use imageSize method in fMBT

Best Python code snippet using fMBT_python

test_one.py

Source:test_one.py Github

copy

Full Screen

1from __future__ import print_function2import argparse3import os4import random5import torch6import torch.nn as nn7import torch.nn.parallel8import torch.backends.cudnn as cudnn9import torch.optim as optim10import torch.utils.data11import torchvision.datasets as dset12import torchvision.transforms as transforms13import torchvision.utils as vutils14from torch.autograd import Variable15from model import _netG16import utils17parser = argparse.ArgumentParser()18parser.add_argument('--dataset', default='streetview', help='cifar10 | lsun | imagenet | folder | lfw ')19parser.add_argument('--test_image', required=True, help='path to dataset')20parser.add_argument('--workers', type=int, help='number of data loading workers', default=4)21parser.add_argument('--batchSize', type=int, default=64, help='input batch size')22parser.add_argument('--imageSize', type=int, default=128, help='the height / width of the input image to network')23parser.add_argument('--nz', type=int, default=100, help='size of the latent z vector')24parser.add_argument('--ngf', type=int, default=64)25parser.add_argument('--ndf', type=int, default=64)26parser.add_argument('--nc', type=int, default=3)27parser.add_argument('--niter', type=int, default=25, help='number of epochs to train for')28parser.add_argument('--lr', type=float, default=0.0002, help='learning rate, default=0.0002')29parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')30parser.add_argument('--cuda', action='store_true', help='enables cuda')31parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use')32parser.add_argument('--netG', default='', help="path to netG (to continue training)")33parser.add_argument('--netD', default='', help="path to netD (to continue training)")34parser.add_argument('--outf', default='.', help='folder to output images and model checkpoints')35parser.add_argument('--manualSeed', type=int, help='manual seed')36parser.add_argument('--nBottleneck', type=int, default=4000, help='of dim for bottleneck of encoder')37parser.add_argument('--overlapPred', type=int, default=4, help='overlapping edges')38parser.add_argument('--nef', type=int, default=64, help='of encoder filters in first conv layer')39parser.add_argument('--wtl2', type=float, default=0.999, help='0 means do not use else use with this weight')40opt = parser.parse_args()41print(opt)42netG = _netG(opt)43# netG = TransformerNet()44netG.load_state_dict(torch.load(opt.netG, map_location=lambda storage, location: storage)['state_dict'])45# netG.requires_grad = False46netG.eval()47transform = transforms.Compose([transforms.ToTensor(),48 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])49image = utils.load_image(opt.test_image, opt.imageSize)50image = transform(image)51image = image.repeat(1, 1, 1, 1)52input_real = torch.FloatTensor(1, 3, opt.imageSize, opt.imageSize)53input_cropped = torch.FloatTensor(1, 3, opt.imageSize, opt.imageSize)54real_center = torch.FloatTensor(1, 3, opt.imageSize / 2, opt.imageSize / 2)55criterionMSE = nn.MSELoss()56# if opt.cuda:57# netG.cuda()58# input_real, input_cropped = input_real.cuda(),input_cropped.cuda()59# criterionMSE.cuda()60# real_center = real_center.cuda()61input_real = Variable(input_real)62input_cropped = Variable(input_cropped)63real_center = Variable(real_center)64input_real.data.resize_(image.size()).copy_(image)65input_cropped.data.resize_(image.size()).copy_(image)66real_center_cpu = image[:, :, opt.imageSize / 4:opt.imageSize / 4 +67 opt.imageSize / 2, opt.imageSize / 4:opt.imageSize / 4 + opt.imageSize / 2]68real_center.data.resize_(real_center_cpu.size()).copy_(real_center_cpu)69input_cropped.data[:, 0, opt.imageSize / 4 + opt.overlapPred:opt.imageSize / 4 + opt.imageSize / 2 - opt.overlapPred,70 opt.imageSize / 4 + opt.overlapPred:opt.imageSize / 4 + opt.imageSize / 2 - opt.overlapPred] = 2 * 117.0 / 255.0 - 1.071input_cropped.data[:, 1, opt.imageSize / 4 + opt.overlapPred:opt.imageSize / 4 + opt.imageSize / 2 - opt.overlapPred,72 opt.imageSize / 4 + opt.overlapPred:opt.imageSize / 4 + opt.imageSize / 2 - opt.overlapPred] = 2 * 104.0 / 255.0 - 1.073input_cropped.data[:, 2, opt.imageSize / 4 + opt.overlapPred:opt.imageSize / 4 + opt.imageSize / 2 - opt.overlapPred,74 opt.imageSize / 4 + opt.overlapPred:opt.imageSize / 4 + opt.imageSize / 2 - opt.overlapPred] = 2 * 123.0 / 255.0 - 1.075fake = netG(input_cropped)76errG = criterionMSE(fake, real_center)77recon_image = input_cropped.clone()78recon_image.data[:, :, opt.imageSize / 4:opt.imageSize / 4 + opt.imageSize /79 2, opt.imageSize / 4:opt.imageSize / 4 + opt.imageSize / 2] = fake.data80utils.save_image('val_real_samples.png', image[0])81utils.save_image('val_cropped_samples.png', input_cropped.data[0])82utils.save_image('val_recon_samples.png', recon_image.data[0])...

Full Screen

Full Screen

join_all_images.py

Source:join_all_images.py Github

copy

Full Screen

1from PIL import Image2def join_all_images():3 imp1 = Image.open("./Images/terms_wise_outstanding.png")4 widthx, heightx = imp1.size5 imp2 = Image.open("./Images/category_wise_credit.png")6 imageSize = Image.new('RGB', (1283, 481))7 imageSize.paste(imp1, (1, 0))8 imageSize.paste(imp2, (widthx + 2, 0))9 imageSize.save("./Images/all_credit.png")10 imp3 = Image.open("./Images/matured_credit.png")11 widthx, heightx = imp1.size12 imp4 = Image.open("./Images/aging_matured_credit.png")13 imageSize = Image.new('RGB', (1283, 481))14 imageSize.paste(imp3, (1, 0))15 imageSize.paste(imp4, (widthx + 2, 0))16 imageSize.save("./Images/all_Matured_credit.png")17 # ---------------------------------------------------------18 imp10 = Image.open("./Images/Category_wise_cash.png")19 widthx, heightx = imp1.size20 imp11 = Image.open("./Images/aging_cash_drop.png")21 imageSize = Image.new('RGB', (1283, 481))22 imageSize.paste(imp10, (1, 0))23 imageSize.paste(imp11, (widthx + 2, 0))24 imageSize.save("./Images/all_cash.png")25 # ------------- Closed to Matured, Matured Credit ---------------------------26 imp5 = Image.open("./Images/regular_credit.png")27 widthx, heightx = imp1.size28 imp6 = Image.open("./Images/closed_to_matured_credit.png")29 imageSize = Image.new('RGB', (1283, 481))30 imageSize.paste(imp5, (1, 0))31 imageSize.paste(imp6, (widthx + 2, 0))32 imageSize.save("./Images/all_regular_credit.png")33 imp20 = Image.open("./Images/Cause_with_return.png")34 widthx, heightx = imp20.size35 imp21 = Image.open("./Images/LD_MTD_YTD_TARGET_vs_sales.png")36 imageSize = Image.new('RGB', (1283, 482))37 imageSize.paste(imp20, (1, 1))38 imageSize.paste(imp21, (widthx + 2, 1))39 imageSize.save("./Images/Cause_wise_delivery_man_wise_return.png")40 # ------------adding cause wise return and delivery man wise return----------41 imp22 = Image.open("./Images/Delivery_man_wise_return.png")42 widthx, heightx = imp22.size43 imageSize = Image.new('RGB', (1283, 482))44 imageSize.paste(imp22, (1, 1))45 imageSize.save("./Images/new_total_delivery_man_wise_return.png")46 # ------------adding cause wise return and delivery man wise return----------47 imp23 = Image.open("./Images/Day_Wise_Target_vs_Sales.png")48 widthx, heightx = imp23.size49 imageSize = Image.new('RGB', (1283, 482))50 imageSize.paste(imp23, (1, 1))51 imageSize.save("./Images//Day_wise_target_sales.png")52 imp24 = Image.open("./Images/Cumulative_Day_Wise_Target_vs_Sales.png")53 widthx, heightx = imp24.size54 imageSize = Image.new('RGB', (1283, 482))55 imageSize.paste(imp24, (1, 1))56 imageSize.save("./Images/Cumulative_Day_wise_target_sales.png")...

Full Screen

Full Screen

weightMask.py

Source:weightMask.py Github

copy

Full Screen

1import torch2import torch.nn as nn3import torch.optim as optim4import torch.nn.functional as F5import collections6import numpy as np7from torch.autograd import Variable8## Netowrk Types ##9def generateSquareWeightMask(imageSize, boundarySize):10 ##################################################################11 # Function GENERATE_SQUARE_WEIGHT_MASK12 # Takes in a nested dictionary of model/layer types13 # Outputs a nested dictionary of optimized hyperparameters14 # Parameters:15 # * imageSize: Size of one side of the image16 # * boundarySize: Size of square grid to generate17 # Outputs18 # * weightMask: Input for Repeated Layers Masked19 # 20 ##################################################################21 numPixels = imageSize**222 weightMask = np.zeros((numPixels, numPixels))23 diagMask = np.zeros((numPixels, numPixels))24 for k in range(0, numPixels):25 i,j = ind2subImage(k, imageSize)26 pixelMask = np.zeros((imageSize, imageSize))27 if((i > 0) and (i < imageSize - 1) and (j > 0) and (j < imageSize - 1)):28 row_min = np.max((0, i - boundarySize))29 row_max = np.min((imageSize, i + boundarySize + 1))30 col_min = np.max((0, j - boundarySize))31 col_max = np.min((imageSize, j + boundarySize + 1))32 pixelMask[row_min:row_max, col_min:col_max] = 133 pixelMask[i,j] = 034 diagMask[k, k] = 135 weightMask[k, :] = np.reshape(pixelMask, (1, numPixels))36 weightMask = torch.from_numpy(weightMask).type(torch.cuda.BoolTensor)37 diagMask = torch.from_numpy(diagMask).type(torch.cuda.BoolTensor)38 return weightMask, diagMask39def generateGridWeightMask(imageSize):40 numPixels = imageSize**241 weightMask = np.zeros((numPixels, numPixels))42 diagMask = np.zeros((numPixels, numPixels))43 for k in range(0, numPixels):44 i,j = ind2subImage(k, imageSize)45 pixelMask = np.zeros((imageSize, imageSize))46 if((i > 0) and (i < imageSize - 1) and (j > 0) and (j < imageSize - 1)):47 #pixelMask[i, j] = 148 pixelMask[i - 1, j] = 149 pixelMask[i + 1, j] = 150 pixelMask[i, j + 1] = 151 pixelMask[i, j - 1] = 152 diagMask[k, k] = 153 # if (i > 0):54 # pixelMask[i - 1, j] = 155 # if (i < imageSize - 1):56 # pixelMask[i + 1, j] = 157 # if (j > 0):58 # pixelMask[i, j - 1] = 159 # if (j < imageSize - 1):60 # pixelMask[i, j + 1] = 161 weightMask[k, :] = np.reshape(pixelMask, (1, numPixels))62 #diagMask[k, k] = 163 weightMask = torch.from_numpy(weightMask).type(torch.cuda.BoolTensor)64 diagMask = torch.from_numpy(diagMask).type(torch.cuda.BoolTensor)65 return weightMask, diagMask66def ind2subImage(idx, imageSize):67 i = int(np.floor(idx/imageSize))68 j = idx % imageSize...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run fMBT automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful