Best Python code snippet using fMBT_python
mtransaction.py
Source:mtransaction.py
1from __future__ import absolute_import2############################################################################3# Copyright (C) 2005 by Reithinger GmbH4# mreithinger@web.de5#6# This file is part of metapie.7# 8# metapie is free software; you can redistribute it and/or modify9# it under the terms of the GNU General Public License as published by10# the Free Software Foundation; either version 2 of the License, or11# (at your option) any later version.12#13# pyplan is distributed in the hope that it will be useful,14# but WITHOUT ANY WARRANTY; without even the implied warranty of15# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the16# GNU General Public License for more details.17#18# You should have received a copy of the GNU General Public License19# along with this program; if not, write to the20# Free Software Foundation, Inc.,21# 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.22############################################################################23from builtins import filter24from builtins import str25from builtins import map26from builtins import object27from . import events28import weakref29import metapie30class ConstraintError(ValueError):31 def __init__(self, **kwargs):32 ValueError.__init__(self, "Model constraints are not satisfied")33 self.message = kwargs34class _SequenceProxy(object):35 def __init__(self, proxy, sequence):36 self.proxy = proxy37 self.sequence = sequence38 for im in proxy._removed_imodels.values():39 try:40 del sequence[im]41 except KeyError:42 pass43 44 def __len__(self):45 return len(self.sequence) + len(self.proxy._new_imodels)46 def __delitem__(self, index):47 imodel = self[index]48 del self.proxy[imodel]49 try:50 del self.sequence[imodel]51 except KeyError:52 pass53 def is_dead(self):54 return self.proxy._dead55 def insert(self, imodel):56 self.proxy.insert(imodel)57 def __getitem__(self, index):58 if index >= len(self.sequence):59 return self.proxy._new_imodels[index - len(self.sequence)]60 imodel = self.sequence[index]61 self.proxy.mark(imodel)62 return imodel63class Transaction(events.Subject):64 active_transactions = { }65 class ContainerProxy(object):66 def __init__(self, src):67 self._src = src68 self._dead = False69 self._removed_imodels = {}70 self._new_imodels = []71 self._transaction = Transaction.get_transaction(src._imodel)72 try:73 keys = src._keys74 except AttributeError:75 return76 for k in list(keys.keys()):77 setattr(self, k, getattr(src, k))78 def mark(self, imodel):79 Transaction.mark_imodel(imodel, self._transaction)80 def commit(self):81 self._dead = True82 if not self._removed_imodels and not self._new_imodels: return83 for v in self._removed_imodels.values():84 self._src.delete(v, False)85 for v in self._new_imodels:86 self._src.insert(v, False)87 def rollback(self):88 self._dead = True89 def insert(self, imodel):90 self._src.check_peer(imodel)91 92 if imodel.id() in self._removed_imodels:93 del self._removed_imodels[imodel.id()]94 self._src._add_to_peer(imodel, self._src._imodel)95 self._src.fire()96 elif (imodel not in self._src \97 and id(imodel) not in list(map(id, self._new_imodels))):98 99 self.mark(imodel)100 self._new_imodels.append(imodel)101 self._src._add_to_peer(imodel, self._src._imodel)102 self._src.fire()103 def delete(self, imodel):104 def exclude_model():105 try:106 proxy = self._transaction.active_imodels[imodel]107 except KeyError:108 pass109 else:110 proxy.rollback(imodel)111 del self._transaction.active_imodels[imodel]112 if imodel.id() in self._removed_imodels:113 raise KeyError("model does not exist in container", imodel)114 if imodel in self._src:115 exclude_model()116 self._removed_imodels[imodel.id()] = imodel117 self._src._remove_from_peer(imodel, self._src._imodel)118 self._src.fire()119 else:120 try:121 index = list(map(id, self._new_imodels)).index(id(imodel))122 except ValueError:123 raise KeyError("model does not exist in container", imodel)124 else:125 exclude_model()126 del self._new_imodels[index]127 self._src.fire()128 def recatalog(self, obj):129 return self._src.recatalog(obj)130 def __delitem__(self, imodel):131 self.delete(imodel)132 133 def __len__(self):134 return len(self._src) \135 - len(self._removed_imodels) \136 + len(self._new_imodels)137 138 def __iter__(self):139 return iter(_SequenceProxy(self, self._src.sequence()))140 def subset(self, idset):141 return _SequenceProxy(self, self._src.subset(idset))142 def sequence(self):143 return _SequenceProxy(self, self._src.sequence())144 145 def __contains__(self, imodel):146 id_ = imodel.id()147 if id_ in self._removed_imodels: return False148 return imodel in self._src or imodel in self._new_imodels149 def __getitem__(self, key):150 if key in self._removed_imodels:151 raise KeyError("key does not exist", key)152 try:153 return self._src[key]154 except KeyError:155 for m in self._new_imodels:156 if m.id() == key: return m157 raise KeyError158 class ModelProxy(object):159 def __init__(self, transaction):160 self._transaction = weakref.ref(transaction)161 self.error = None162 def remove_error(self, attrib):163 try:164 del self.error.message[attrib]165 if not self.error.message: self.error = None166 except AttributeError:167 pass168 except KeyError:169 pass170 171 def rollback(self, imodel):172 for t in imodel.__attributes_map__.values():173 if hasattr(self, t.private_name):174 t._rollback_value(imodel, self)175 delattr(self, t.private_name)176 imodel.fire(t.name, t.name)177 self.error = None178 def commit(self, imodel):179 self.error = None180 181 for t in imodel.__attributes_map__.values():182 try:183 pname = t.private_name184 except AttributeError:185 #readonly attributes don't have a private_name186 return187 188 if hasattr(self, pname):189 t._commit_value(imodel, self)190 delattr(self, pname)191 imodel.reindex()192 193 def remove_proxy(cls, imodel):194 try:195 transaction = cls.get_transaction(imodel)196 except RuntimeError:197 return198 del transaction.active_transactions[imodel]199 try:200 del transaction.active_imodels[imodel]201 except KeyError: pass202 remove_proxy = classmethod(remove_proxy)203 def make_proxy(cls, imodel):204 #proxy or transaction205 206 p_or_t = cls.active_transactions.get(imodel)207 try:208 if not p_or_t: return imodel209 except ReferenceError:210 del cls.active_transactions[imodel]211 return imodel212 213 if isinstance(p_or_t, cls.ModelProxy):214 #it is a proxy215 return p_or_t216 #it is a transaction (weakproxy)217 return p_or_t.include(imodel)218 219 220 make_proxy = classmethod(make_proxy)221 def get_proxy(cls, imodel):222 try:223 p_or_t = cls.active_transactions.get(imodel)224 p_or_t.__class__225 226 if isinstance(p_or_t, cls.ModelProxy):227 return p_or_t228 except ReferenceError:229 del cls.active_transactions[imodel]230 return imodel231 232 get_proxy = classmethod(get_proxy)233 def get_transaction(cls, imodel):234 try:235 p_or_t = cls.active_transactions.get(imodel)236 return weakref.proxy(p_or_t._transaction())237 except ReferenceError:238 raise RuntimeError("no active transaction")239 except AttributeError:240 raise RuntimeError("no active transaction")241 242 243 get_transaction = classmethod(get_transaction)244 def mark_imodel(cls, imodel, transaction):245 assert(type(transaction) is weakref.ProxyType)246 try:247 proxy = cls.active_transactions.setdefault(imodel, transaction)248 proxy.__class__ #causes a ReferenceError if it is a broken reference249 except ReferenceError:250 cls.active_transactions[imodel] = transaction251 mark_imodel = classmethod(mark_imodel)252 253 def __init__(self):254 self.active_imodels = { }255 def __del__(self):256 self.destroy()257 258 def include(self, imodel):259 proxy = self.active_transactions.get(imodel, self)260 if proxy._transaction() is not self:261 raise RuntimeError("the object '%s' belongs "\262 "already to a transaction" % str(imodel))263 if isinstance(proxy, self.ModelProxy):264 #allready included265 return266 267 proxy = self.ModelProxy(self)268 self.active_transactions[imodel] = proxy269 self.active_imodels[imodel] = proxy270 return proxy271 272 def _transaction(self):273 return self274 275 def commit(self):276 #phase one try commit277 commit_ok = True278 for imodel, proxy in self.active_imodels.items():279 try:280 imodel.check_constraints()281 except ConstraintError as e:282 proxy.error = e283 commit_ok = False284 else:285 proxy.error = None286 287 if commit_ok:288 for imodel, proxy in self.active_imodels.items():289 proxy.commit(imodel)290 self.fire("commit", True)291 metapie._dbcommit()292 else:293 self.fire("commit", False)294 return commit_ok295 def get_errors(self):296 result = {}297 for imodel, proxy in self.active_imodels.items():298 try:299 result[imodel] = proxy.error300 except AttributeError:301 pass302 return result303 304 def rollback(self):305 for imodel, proxy in self.active_imodels.items():306 proxy.rollback(imodel)307 self.fire("rollback")308 def destroy(self):309 def is_my_item(item):310 imodel, p_or_t = item311 try:312 t = p_or_t._transaction()313 return t is self or not t314 except ReferenceError:315 return True316 my_models = list(filter(is_my_item, iter(self.active_transactions.items())))317 for k, v in my_models:318 del self.active_transactions[k]319 ...
dbtransient.py
Source:dbtransient.py
1############################################################################2# Copyright (C) 2005 by Reithinger GmbH3# mreithinger@web.de4#5# This file is part of metapie.6# 7# metapie is free software; you can redistribute it and/or modify8# it under the terms of the GNU General Public License as published by9# the Free Software Foundation; either version 2 of the License, or10# (at your option) any later version.11#12# pyplan is distributed in the hope that it will be useful,13# but WITHOUT ANY WARRANTY; without even the implied warranty of14# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the15# GNU General Public License for more details.16#17# You should have received a copy of the GNU General Public License18# along with this program; if not, write to the19# Free Software Foundation, Inc.,20# 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.21############################################################################22"""23Objects that will not be persistent24"""25from __future__ import absolute_import26from builtins import str27from builtins import object28import metapie29from . import peer30import bisect31class _ResultSet(object):32 """Lazily accessed set of objects."""33 def __init__(self, uids, uidutil):34 self.uids = uids35 self.uidutil = uidutil36 def __len__(self):37 return len(self.uids)38 def __delitem__(self, imodel):39 try:40 index = self.uids.index(imodel.id())41 except ValueError:42 raise KeyError("model does not exist in container", imodel)43 else:44 del self.uids[index]45 46 def __getitem__(self, index):47 return self.uidutil[self.uids[index]]48 49class FieldIndex(object):50 def __init__(self):51 self.index = []52 def index_id(self, docid, value):53 bisect.insort_right(self.index, (value, docid))54 def unindex_id(self, docid):55 pos = 056 while pos < len(self.index):57 if self.index[pos][1] == docid:58 del self.index[pos]59 else:60 pos += 161 def apply(self, min, max=None, excludemin=False, excludemax=False):62 pos = bisect.bisect_right(self.index, (min, 0))63 if excludemin:64 while pos < len(self.index):65 value, docid = self.index[pos]66 if value != min: break67 pos += 168 def all_keys():69 while pos < len(self.index):70 value, docid = self.index[pos]71 if max:72 if excludemax and value == max: break73 if value > max: break74 yield docid75 pos += 176 return list(all_keys())77class Container(peer.Peer):78 def __init__(self, imodel, peer_class, name_to_me, name_to_peer, index):79 self._container = {}80 self._imodel = imodel81 self._peer_class = peer_class82 self._name_to_me = name_to_me83 self._name_to_peer = name_to_peer84 85 def check_peer(self, imodel):86 if not isinstance(imodel, self._peer_class):87 raise ValueError("'%s' is not of type '%s'"%88 (str(imodel), self.contained_class.__name__))89 def fire(self):90 self._imodel.fire(self._name_to_peer, self._name_to_peer)91 self._imodel.fire("default", self._name_to_peer)92 93 def insert(self, imodel, fire=True):94 self.check_peer(imodel)95 if self._insert_item(imodel):96 self._add_to_peer(imodel, self._imodel)97 if fire: self.fire()98 def delete(self, imodel, fire=True):99 if self._del_item(imodel):100 self._remove_from_peer(imodel, self._imodel)101 if fire: self.fire()102 else:103 raise KeyError("model does not exist in container", imodel)104 def recatalog(self, obj):105 return False106 def sequence(self):107 keys = list(self._container.keys())108 keys.sort()109 return _ResultSet(keys, self._container)110 def __bool__(self): return len(self._container) > 0111 def __len__(self): return len(self._container)112 def __iter__(self): return iter(self._container.values())113 def __contains__(self, imodel): return imodel.id() in self._container114 def __getitem__(self, key): return self._container[key]115 def __delitem__(self, imodel): self.delete(imodel)116 def _insert_item(self, imodel):117 if imodel.id() not in self._container:118 self._container[imodel.id()] = imodel119 return True120 121 return False122 def _del_item(self, imodel):123 try:124 del self._container[imodel.id()]125 except KeyError:126 return False127 return True128class IdGenerator(object):129 instance = None130 def get_id(cls, type="default"):131 if not cls.instance: cls.instance = cls()132 counter = getattr(cls.instance, type, 0)133 setattr(cls.instance, type, counter + 1)134 return counter135 get_id = classmethod(get_id)136 137class _PersistentBase(object):138 __id_type__ = None139 140 def __init__(self):141 #generate a unique long lasting id142 self.__id = IdGenerator.get_id(self.__id_type__ \143 or self.__class__.__name__)144 #self.__id = int(time.time()) % 100000 + (id(self) % 10000) * 100000145 146 def id(self): return self.__id147 148def _commitdumy(): pass149metapie._init_db_module("transient", _PersistentBase, Container, _commitdumy)...
train.py
Source:train.py
1import tensorflow as tf2import keras3from keras.models import Sequential4from keras.layers import Dense, MaxPool2D, AveragePooling2D5from keras.layers import Conv2D, Activation, Dropout, Flatten6from keras.preprocessing.image import ImageDataGenerator7import numpy as np8import matplotlib.pyplot as plt9# cpu configuration10config = tf.ConfigProto( device_count = {'GPU': 1 , 'CPU': 56} ) #max: 1 gpu, 56 cpu11sess = tf.Session(config=config)12keras.backend.set_session(sess)13#14num_classes = 7 # sad, happy, surprise, angry, fear, nutral, disgust15batch_size = 25616epoch = 4417with open("fer2013.csv") as f:18 content = f.readlines()19lines = np.array(content)20num_instance =lines.size21# train test22x_train, y_train, x_test, y_test = [], [], [], []23for i in range(1,num_instance):24 try:25 emotion, img, usage = lines[i].split(",")26 val = img.split(" ")27 pixels = np.array(val, 'float32')28 emotion = keras.utils.to_categorical(emotion, num_classes)29 if 'Training' in usage:30 y_train.append(emotion)31 x_train.append(pixels)32 elif 'PublicTest' in usage:33 y_test.append(emotion)34 x_test.append(pixels)35 except:36 print("", end="")37# data transformation for train and test sets38x_train = np.array(x_train, 'float32')39y_train = np.array(y_train, 'float32')40x_test = np.array(x_test, 'float32')41y_test = np.array(y_test, 'float32')42x_train /= 255 #normalize inputs between [0, 1]43x_test /= 25544x_train = x_train.reshape(x_train.shape[0], 48, 48, 1)45x_train = x_train.astype('float32')46x_test = x_test.reshape(x_test.shape[0], 48, 48, 1)47x_test = x_test.astype('float32')48print(x_train.shape[0], 'train samples')49print(x_test.shape[0], 'test samples')50# creating the sequential model51imodel_fe = Sequential()52#1st convolution layer53imodel_fe.add(Conv2D(64, (5, 5), activation='relu', input_shape=(48,48,1)))54imodel_fe.add(MaxPool2D(pool_size=(5, 5), strides=(2, 2)))55#2nd c layer56imodel_fe.add(Conv2D(64, (3, 3), activation='relu'))#12857imodel_fe.add(Conv2D(64, (3,3), activation='relu'))58imodel_fe.add(AveragePooling2D(pool_size=(3, 3),strides=(2, 2)))59#3rd c layer60imodel_fe.add(Conv2D(64, (3, 3), activation='relu'))#12861imodel_fe.add(Conv2D(64, (3,3), activation='relu'))62imodel_fe.add(AveragePooling2D(pool_size=(3, 3),strides=(2, 2)))63imodel_fe.add(Flatten())64# fully connected neural network65imodel_fe.add(Dense(1024, activation='relu'))66imodel_fe.add(Dropout(0.2))67imodel_fe.add(Dense(1024, activation='relu'))68imodel_fe.add(Dropout(0.2))69imodel_fe.add(Dense(num_classes, activation='softmax'))70#--------------------------------------71#batch process72gen = ImageDataGenerator()# this is used to normalise images in format keras can understand73train_generator = gen.flow(x_train, y_train, batch_size=batch_size)74imodel_fe.compile(loss='categorical_crossentropy'75 , optimizer=keras.optimizers.Adam()76 , metrics=['accuracy']77)78#---------------------------------------------79fit = True80if fit == True:81 #model.fit_generator(x_train, y_train, epochs=epochs) #train for all trainset82 imodel_fe.fit_generator(train_generator, steps_per_epoch=batch_size, epochs=epoch) #train for randomly selected one83else:84 imodel_fe.load_weights('model33.h5') #load weights85# ------------------------------86# function for drawing bar chart for emotion preditions87def emotion_analysis(emotions):88 objects = ('angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral')89 y_pos = np.arange(len(objects))90 plt.bar(y_pos, emotions, align='center', alpha=0.5)91 plt.xticks(y_pos, objects)92 plt.ylabel('percentage')93 plt.title('emotion')94 plt.show()95# ------------------------------96imodel_fe.save('model2.h5')97#--------------------------------98monitor_testset_results = True99if monitor_testset_results == True:100 # make predictions for test set101 predictions = imodel_fe.predict(x_test)102 index = 0103 for i in predictions:104 if index < 30 and index >= 20:105 # print(i) #predicted scores106 # print(y_test[index]) #actual scores107 testing_img = np.array(x_test[index], 'float32')108 testing_img = testing_img.reshape([48, 48]);109 plt.gray()110 plt.imshow(testing_img)111 plt.show()112 print(i)113 emotion_analysis(i)114 print("----------------------------------------------")115 index = index + 1116#------------------------------------------------------------------------------117from keras.models import load_model...
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!