Best Python code snippet using fMBT_python
graph.py
Source:graph.py
...144 discovered.append(c)145 # se actualiza u = c146 u = c147 return tree148 def addDistances(self, rangeL=2, rangeR=50):149 """150 rangeL: left limit (int). Default 2.151 rangeR: right limit (int). Default 50.152 return distances (list)153 Create a list of random integer numbers for each edge of random graph.154 """155 n_edges = len(self.edges)156 distances = [random.randint(rangeL, rangeR) for _ in range(n_edges)]157 return distances158 def createAdjMat(self):159 """160 return m (numpy 2D-array)161 Creates the adjacent matrix of random graph"""162 distances = self.addDistances()163 n_dis = len(distances)164 n_nodes = len(self.nodes)165 edges = self.edges166 m = np.ones((n_nodes, n_nodes))*np.inf167 c = 0168 for e in edges:169 i = int(e.split("->")[0])170 j = int(e.split("->")[1])171 m[i, j] = distances[c]172 m[j, i] = distances[c]173 c += 1174 for i in range(m.shape[0]):175 for j in range(m.shape[1]):176 if i == j:177 m[i, j] = 0178 return m179 def Dijkstra(self, s):180 """181 s: source node (int)182 return: dg (Graph)183 Returns Dijkstra tree from random graph"""184 dg = Graph() # Dijkstra graph185 dg.typee = 9 # id of graph186 mat = self.createAdjMat() # adjacent matrix mat187 INF = np.inf # varible with infinite value to represent nodes no neighbors188 distancias = [INF]*mat.shape[0] # vector de distancias minimas189 visto = [False]*mat.shape[0] # vector de nodos visitados190 padre = [-1]*mat.shape[0] # nodos padres191 caminos = [()]*mat.shape[0] # caminos192 distancias[s] = mat[s][s] # distance of s to s is 0.193 while sum(visto) < len(visto):194 dismin = INF # dismin195 v_min = 0 # nodo con distancia minima196 for i in range(len(visto)):197 # se obtiene el nodo de distancia minima198 if visto[i] == False and distancias[i] < dismin:199 dismin = distancias[i]200 v_min = i # nodo de distancia minima201 visto[v_min] = True # se marca como visto el nodo202 for i in range(len(visto)): # si L(y) > L(x)+w(x,y)203 if not visto[i] and mat[v_min][i] != 0 and distancias[i] > distancias[v_min] + mat[v_min][i]:204 # se actualiza nueva distancia mÃnima205 distancias[i] = distancias[v_min] + mat[v_min][i]206 padre[i] = v_min # se obtiene el nodo padre del nodo i207 # Para obtener los caminos208 for i in range(len(padre)):209 nodo = i # nodo final210 c = []211 while nodo != -1: # hasta que se llegue al nodo inicio212 c.append(nodo) # se guarda el nodo213 nodo = padre[nodo] # y se mueve al nodo predecesor214 caminos[i] = c[::-1]215 # Agregar edges al grafo dg (Graph)216 for camino in caminos:217 if len(camino) > 1:218 p = 0219 while p < len(camino)-1:220 dg.addEdge(camino[p], camino[p+1],221 f"{camino[p]}->{camino[p+1]}")222 p += 1223 # Se crea lista orden para pasar las distancias de cada nodo a s en gephi224 orden = []225 for camino in caminos:226 for r in camino:227 if r not in orden:228 orden.append(r)229 # Se agregan las distancias a dg (Graph)230 for r in orden:231 dg.ds.append(distancias[r])232 return dg233 def KruskalD(self):234 kg = Graph() # Kruskal Graph235 kg.typee = 10 # id of graph236 distances = self.addDistances()237 vertex = list(self.edges.keys())238 sorted_vertex = []239 sorted_distances = []240 # vertex and distances ordered ascendently241 for _ in range(len(distances)):242 idx_min_distance = np.argmin(distances)243 sorted_vertex.append(vertex[idx_min_distance])244 sorted_distances.append(distances[idx_min_distance])245 vertex.pop(idx_min_distance)246 distances.pop(idx_min_distance)247 # Connected component248 connected_components = []249 for i in range(len(self.nodes)):250 temp = [False]*len(self.nodes)251 temp[i] = True252 connected_components.append(temp)253 # iteratee over all graph's vertex and check if their nodes don't belong254 # to the same subset to create edge in kruskal tree255 for i in range(len(sorted_vertex)):256 u = int(sorted_vertex[i].split('->')[0])257 v = int(sorted_vertex[i].split('->')[-1])258 # if u and v aren't in the same subset259 if connected_components[u] != connected_components[v]:260 kg.addEdge(u, v, f"{u}->{v}")261 for x in range(len(connected_components[u])):262 if connected_components[u][x]:263 for y in range(len(connected_components[v])):264 if connected_components[v][y]:265 connected_components[x][y] = True266 connected_components[y][x] = True267 kg.mst += sorted_distances[i]268 return kg269 def KruskalI(self):270 kg = Graph() # Kruskal Graph271 kg.typee = 11 # id of graph272 distances = self.addDistances()273 vertex = list(self.edges.keys())274 sorted_vertex = []275 sorted_distances = []276 # vertex and distances ordered ascendently277 for _ in range(len(distances)):278 idx_min_distance = np.argmin(distances)279 sorted_vertex.append(vertex[idx_min_distance])280 sorted_distances.append(distances[idx_min_distance])281 vertex.pop(idx_min_distance)282 distances.pop(idx_min_distance)283 # Connected component284 connected_components = []285 for i in range(len(self.nodes)):286 temp = [False]*len(self.nodes)...
Preprocessing.py
Source:Preprocessing.py
...28 'findRoute(Route) :- retractall(added(_)), retractall(edge(_,_)), retractall(visited(_)), retractall(route(_)), '29 'sortPools(Pools), first(Pools,Root), assertz(added(Root)), delete(Pools,Root,RootlessPools), leastDistant(Root, '30 'RootlessPools, Min), assertz(edge(Root,Min)), assertz(added(Min)), delete(RootlessPools,Min,LessPools), '31 'buildTree(LessPools), assertz(visited(Root)), assertz(route([])), preorder(Root), route(Partial), push(Root,'32 'Partial,Partial2), first(Root,Name), addDistances([[Name,0]],Partial2,_,0,Route). %Retracts and sets all dynamic '33 'predicates, sorts the pool list, sets the root node of the tree, adds an edge to the closest node in the pool '34 'list (excluding root), builds the tree, traverses the tree in preorder and sums the distance traveled at each '35 'node. Appends the distances to the corresponding node and returns this list (Route).\n\n' +36 'writeToFile([],_).\n'37 'writeToFile([H|T],Out) :- first(H,Name), last(H,Distance), write(Out,Name), write(Out," "), write(Out,Distance), '38 'nl(Out), writeToFile(T,Out). %Opens file File in append mode with output stream Out and takes the Name and '39 'Distance of the first element in the route list and writes it to the file. Repeats the process recursively for '40 'each element in the list\n\n' +41 'sortPools(Sorted) :- pools(List), predsort(compareLongitude,List,Sorted). %Sorts the pools list using the '42 'predicate compareLatitude\n\n' +43 'compareLongitude(X,[_,Longitude1,_],[_,Longitude2,_]) :- compare(X,Longitude1,Longitude2). %Compares latitudes '44 'of two pools and returns the symbol equalling the result of the comparison (<, ==, >)\n\n' +45 'first([H|_], H). %Returns the head of a list\n\n'46 'leastDistant(Node,List,Min) :- predsort(compareDistance(Node),List,Sorted), first(Sorted,Min). %Finds the least '47 'distant node (Min) in the List from Node by sorting the list using predicate compareDistance and taking the '48 'first element of the returned sorted list\n\n' +49 'compareDistance(Node,X,Node1,Node2) :- distance(Node,Node1,Distance1), distance(Node,Node2,Distance2), '50 'compare(X,Distance1,Distance2). %Compares the distance between Node and Node1 with the distance between Node and '51 'Node2 and returns the symbol equalling the result of the comparison (<, ==, >)\n\n' +52 'distance([_,Longitude1,Latitude1],[_,Longitude2,Latitude2],Distance) :- toRadians(Latitude1,Lat1), toRadians('53 'Latitude2,Lat2), toRadians(Longitude1,Lon1), toRadians(Longitude2,Lon2), Distance is 6371*2*asin(sqrt(((sin(('54 'Lat1-Lat2)/2))^2)+cos(Lat1)*cos(Lat2)*((sin((Lon1-Lon2)/2))^2))). %Calculates the distance in kilometers between '55 'two geopgraphical coordinates\n\n' +56 'toRadians(Degrees, Degrees*(pi/180)). %Converts Degrees to Radians\n\n' +57 'buildTree([]).\n' +58 'buildTree([H|T]) :- setof(Nodes,added(Nodes),Tree), leastDistant(H,Tree,Min), assertz(edge(Min,H)), '59 'assertz(added(H)), buildTree(T). %Builds a tree by checking the nodes that are currently in the tree (added(_)), '60 'finding the node in the tree that is least distant (Min) from the current node (H) and creates an edge between '61 'the two. Repeats the process recursively until all nodes are added (list is empty)\n\n' +62 'preorder(_) :- setof(Nodes,added(Nodes),Added), setof(Nodes,visited(Nodes),Visited), Added == Visited.\n' +63 'preorder(Node) :- edge(Node,Child), assertz(visited(Child)), route(Partial), append(Partial,[Child],Route), '64 'retractall(route(_)), assertz(route(Route)), preorder(Child). %For each edge between Node and Child, '65 'visit Child, take the name, append the element to the cumulative route and update the cumulative route. Repeat '66 'the process recursively until all nodes have been visited\n\n' +67 'push(Element,List,[Element|List]). %Appends an Element to the front of the List\n\n' +68 'addDistances(Route,[_|[]],_,_,Route).\n' +69 'addDistances(Partial,[H|T],Acc,Sum,Route) :- first(T,B), distance(H,B,Distance), Sum1 is Sum+Distance, first(B,'70 'Name), append(Partial,[[Name,Sum1]],Acc), addDistances(Acc,T,_,Sum1,Route). %Calculates the distance between the '71 'next head and the current head and appends the distance to the current head. Repeat the process recursively '72 'until the next head is empty '73)74prolog_file.close()...
uq_feed_helper.py
Source:uq_feed_helper.py
...24 res.append(each)25 else:26 if lot == lotInfo:27 res.append(each)28 parkinfo = addDistances(res, CONFIG, location)29 return parkinfo30def getResponse(PARKINGLOTINFO, lot, location, CONFIG, userType="S"):31 parkinginfo = parseFeed(PARKINGLOTINFO)32 res = getUserSpecificResponse(parkinginfo, userType, lot, CONFIG, location)33 return res34def addDistances(parkinginfo, CONFIG, location):35 allGeo = []36 for each in parkinginfo:37 allGeo.append(each["geo"])38 geos = "|".join(allGeo)39 distanceinfo = getDistance(location, geos, CONFIG)40 distanceinfo = distanceinfo["rows"][0]["elements"]41 for ind, item in enumerate(parkinginfo):42 item["distance"] = distanceinfo[ind]["distance"]["value"]43 item["duration"] = distanceinfo[ind]["duration"]["text"]44 return parkinginfo45def getUserSpecificResponse(parkinginfo, userType, lot, CONFIG, location):46 res = []47 if lot != "":48 temp = []49 for each in parkinginfo:50 lotParts = []51 realLot = each["lot"]52 if " " in realLot:53 lotParts = realLot.split(" ")54 else:55 lotParts.append(realLot)56 if lot in lotParts:57 temp.append(each)58 for t in temp:59 if userType in t["type"]:60 res.append(t)61 parkinfo = addDistances(res, CONFIG, location)62 if len(parkinfo) > 0:63 parkinfo.sort(key=lambda x: x["distance"])64 else:65 parkinfo = []66 return parkinfo67 else:68 for each in parkinginfo:69 if userType in each["type"]:70 res.append(each)71 parkinfo = addDistances(res, CONFIG, location)72 if len(parkinfo) > 0:73 parkinfo.sort(key=lambda x: x["distance"])74 else:75 return []76 for park in parkinfo:77 if park["distance"] > 1000:78 park["distance"] = "{:.1f}".format(float(park["distance"] / 1000)) + " kilometers"79 else:80 park["distance"] = "{} meters".format(park["distance"])81 return parkinfo82def getDistance(my, park, CONFIG):83 response = requests.get("{}?origins={}&destinations={}&key={}".format(CONFIG["google_map_url"], my, park, CONFIG["google_map_key"]))84 if response.status_code == 200:85 content = json.loads(response.content)...
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!