Best Python code snippet using behave
hw1_regression.py
Source: hw1_regression.py
...12 # a. lambda for weight generation--non-negative integer:13 w_lambda = int(sys.argv[1])14 # b. sigma squared for observation--arbitrary positive number:15 y_sigma2 = int(sys.argv[2])16 def parse_features(filename):17 with open(filename) as f:18 lines = f.readlines()19 features = np.asarray(20 [[float(val) for val in line.split(",")] for line in lines]21 )22 return features23 # c. 'X_train.csv'24 X_train = parse_features(sys.argv[3])25 # d. 'y_train.csv'26 y_train = parse_features(sys.argv[4])27 # e. 'X_test.csv'28 X_test = parse_features(sys.argv[5])29 # ## Posterior Estimation30 #31 # Posterior covariance matrix:32 w_cov_posterior = np.linalg.pinv(w_lambda + np.matmul(X_train.T, X_train) / y_sigma2)33 # ## Ridge Regression34 #35 # Given samples and observations, solve the following ridge regression problem under the given generation & observation noises36 #37 # $$38 # w_{RR} = \arg\min_w \|y - Xw\|^2 + \lambda\|w\|^2.39 # $$40 #41 # Which is42 #...
features.py
Source: features.py
...43 def storage(self):44 return "enable_{0}".format(self.identifier)45def add_feature(group, feature):46 Feature(group, feature).add_options()47def parse_features(opt, group_name, features):48 def is_feature(dep):49 return dep['name'].find('--') >= 050 def strip_feature(dep):51 dep['name'] = dep['name'].lstrip('-')52 return dep53 features = [strip_feature(dep) for dep in features if is_feature(dep)]54 group = opt.get_option_group(group_name)55 if not group:56 group = opt.add_option_group(group_name)57 [add_feature(group, feature) for feature in features]...
hw2_classification.py
Source: hw2_classification.py
...9 if len(sys.argv) != 4:10 print "usage: python hw2_classification.py X_train.csv y_train.csv X_test.csv"11 exit(1)12 ## Parse parameters:13 def parse_features(filename):14 with open(filename) as f:15 lines = f.readlines()16 features = np.asarray(17 [[float(val) for val in line.split(",")] for line in lines]18 )19 return features20 # a. 'X_train.csv'21 X_train = parse_features(sys.argv[1])22 # b. 'y_train.csv'23 y_train = parse_features(sys.argv[2]).astype(np.int).ravel()24 # c. 'X_test.csv'25 X_test = parse_features(sys.argv[3])26 # ## Maximum-Likelihood Estimation for Priors & Generative Parameters27 # Class priors:28 prior_ml = np.bincount(y_train).astype(np.float) / y_train.shape[0]29 # Gaussian parameters:30 class_indices = np.unique(y_train)31 mu_ml = np.asarray(32 [np.mean(X_train[y_train == class_idx], axis = 0) for class_idx in class_indices]33 )34 cov_ml = np.asarray(35 [np.cov(X_train[y_train == class_idx].T, bias=True) for class_idx in class_indices]36 )37 # Posterior probabilities for test cases:38 pdfs = [multivariate_normal(mean=mu_ml[class_idx], cov=cov_ml[class_idx]) for class_idx in class_indices]39 posteriors = np.column_stack(...
MyPlotLib.py
Source: MyPlotLib.py
1import matplotlib.pyplot as plt2import numpy as np3import seaborn as sns4def parse_features(features, data):5 good_features = []6 for elem in features:7 if elem in data:8 try:9 t = data[elem] + 110 except TypeError:11 pass12 else:13 good_features.append(elem)14 if good_features == []:15 return False16 return good_features17 18class MyPlotLib():19 def __init__(self):20 pass21 def histogram(self, data, features):22 good_features = parse_features(features, data)23 l = len(good_features)24 f = plt.figure(1)25 data = data.fillna(data.median())26 for i, feature in enumerate(good_features):27 a = plt.subplot(1, l, i + 1)28 a.hist(data[feature], color='blue', edgecolor='black',29 bins = 30)30 a.title.set_text(feature)31 plt.subplots_adjust(wspace=1)32 plt.show()33 return True34 def density(self, data, features):35 good_features = parse_features(features, data)36 f = plt.figure(1)37 data = data.fillna(data.median())38 for elem in good_features:39 subset = data[elem]40 sns.distplot(subset, hist=False, kde=True, kde_kws={'linewidth': 3},41 label = elem)42 plt.show()43 return True44 def pair_plot(self, data, features):45 good_features = parse_features(features, data)46 data = data[features]47 data = data.fillna(data.median())48 sns.set(style="ticks", color_codes=True)49 sns.pairplot(data)50 plt.show()51 return True52 def box_plot(self, data, features):53 good_features = parse_features(features, data)54 l = len(good_features)55 data = data.fillna(data.median())56 f, plo = plt.subplots(1, l, sharey=True, squeeze=False)57 for i, feature in enumerate(good_features):58 plo[0, i].boxplot(data[feature])59 plo[0, i].title.set_text(feature)60 plt.subplots_adjust(wspace=1)61 plt.show()...
Check out the latest blogs from LambdaTest on this topic:
This article is a part of our Content Hub. For more in-depth resources, check out our content hub on Selenium Cucumber Tutorial.
This article is a part of our Content Hub. For more in-depth resources, check out our content hub on Selenium JavaScript Tutorial.
Headless browsers are gaining popularity as a viable option for testing web applications. As we all know, web browsers are an integral part of automation testing using Selenium Webdriver. While performing Selenium automation testing, Selenium launches the corresponding browser defined in the script during the test run and then executes test steps. However, issues like the slow rendering of web pages can be a potential issue that can delay the test execution speed. As a solution, headless browser testing was introduced to speed up test execution time.
Selenium is one of the most prominent automation frameworks for functional testing and web app testing. Automation testers who use Selenium can run tests across different browser and platform combinations by leveraging an online Selenium Grid, you can learn more about what Is Selenium? Though Selenium is the go-to framework for test automation, Cypress – a relatively late entrant in the test automation game has been catching up at a breakneck pace.
WordPress is like a lighthouse, that lightens up 30% of the internet. Pivotal reason behind it’s huge success is the level of customization that it offers along with huge amount of community support in the form of plugins, themes, extensions, etc. .
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!