How to use pre_tests method in avocado

Best Python code snippet using avocado_python

utils.py

Source:utils.py Github

copy

Full Screen

1import os2import cv23import numpy as np4from PIL import Image5def load_train(image_size=33, stride=33, scale=3,dirname=r'dataset\train'):6 dir_list = os.listdir(dirname)7 images = [cv2.cvtColor(cv2.imread(os.path.join(dirname,img)),cv2.COLOR_BGR2GRAY) for img in dir_list]8 #==========================9 #这里判断采样步长 是否能被整除10 #=========================11 images = [img[0:img.shape[0]-np.remainder(img.shape[0],scale),0:img.shape[1]-np.remainder(img.shape[1],scale)] for img in images]12 trains = images.copy()13 labels = images.copy()14 #========================================15 #对train image 进行方法缩小 产生不清晰的图像16 #========================================17 trains = [cv2.resize(img, None, fx=1/scale, fy=1/scale, interpolation=cv2.INTER_CUBIC) for img in trains]18 trains = [cv2.resize(img, None, fx=scale/1, fy=scale/1, interpolation=cv2.INTER_CUBIC) for img in trains]19 sub_trains = []20 sub_labels = []21 22 #========================================23 #通过采样形成标签 和训练数据,24 # 一张 图片 通过采样,可以分成很多个图像块,作为训练数据,丰富样本25 #========================================26 for train, label in zip(trains, labels):27 v, h = train.shape28 print(train.shape)29 for x in range(0,v-image_size+1,stride):30 for y in range(0,h-image_size+1,stride):31 sub_train = train[x:x+image_size,y:y+image_size]32 sub_label = label[x:x+image_size,y:y+image_size]33 sub_train = sub_train.reshape(image_size,image_size,1)34 sub_label = sub_label.reshape(image_size,image_size,1)35 sub_trains.append(sub_train)36 sub_labels.append(sub_label)37 #========================================38 #编码为numpy array39 #========================================40 sub_trains = np.array(sub_trains)41 sub_labels = np.array(sub_labels)42 return sub_trains, sub_labels43def load_test(scale=3,dirname=r'dataset\test'):44 #========================================45 # 生成测试数据的方式与训练数据相同46 # pre_tests 是用来保存缩小后的图片47 #========================================48 dir_list = os.listdir(dirname)49 images = [cv2.cvtColor(cv2.imread(os.path.join(dirname,img)),cv2.COLOR_BGR2GRAY) for img in dir_list]50 images = [img[0:img.shape[0]-np.remainder(img.shape[0],scale),0:img.shape[1]-np.remainder(img.shape[1],scale)] for img in images]51 tests = images.copy()52 labels = images.copy()53 54 pre_tests = [cv2.resize(img, None, fx=1/scale, fy=1/scale, interpolation=cv2.INTER_CUBIC) for img in tests]55 tests = [cv2.resize(img, None, fx=scale/1, fy=scale/1, interpolation=cv2.INTER_CUBIC) for img in pre_tests]56 57 pre_tests = [img.reshape(img.shape[0],img.shape[1],1) for img in pre_tests]58 tests = [img.reshape(img.shape[0],img.shape[1],1) for img in tests]59 labels = [img.reshape(img.shape[0],img.shape[1],1) for img in labels]60 return pre_tests, tests, labels61#========================================62# 下面函数用来计算重构前后的图片指标63#========================================64def mse(y, t):65 return np.mean(np.square(y - t))66def psnr(y, t):67 return 20 * np.log10(255) - 10 * np.log10(mse(y, t))68def ssim(x, y):69 mu_x = np.mean(x)70 mu_y = np.mean(y)71 var_x = np.var(x)72 var_y = np.var(y)73 cov = np.mean((x - mu_x) * (y - mu_y))74 c1 = np.square(0.01 * 255)75 c2 = np.square(0.03 * 255)...

Full Screen

Full Screen

lib.py

Source:lib.py Github

copy

Full Screen

1import os2import cv23import numpy as np4from PIL import Image5import sys6import matplotlib.pyplot as plt7#Two simple function to load the training and testing data8def load_train(image_size=33, stride=33, scale=3, dim=3, load_txt=False):9 dirname = './data'10 dir_list = os.listdir(dirname)11 images = []12 #load the data13 images = [cv2.imread(os.path.join(dirname,img)) for img in dir_list if img != ".DS_Store"]14 images = [img[0:img.shape[0]-np.remainder(img.shape[0],scale),0:img.shape[1]-np.remainder(img.shape[1],scale)] for img in images]15 X_train = images.copy()16 Y_train = images.copy()17 #downsample and upsample to create the LR images18 X_train = [cv2.resize(img, None, fx=1/scale, fy=1/scale, interpolation=cv2.INTER_CUBIC) for img in X_train]19 X_train = [cv2.resize(img, None, fx=scale/1, fy=scale/1, interpolation=cv2.INTER_CUBIC) for img in X_train]20 sub_X_train = []21 sub_Y_train = []22 #Creating the sub images of 33x33 23 for train, label in zip(X_train, Y_train):24 v = train.shape[0]25 h = train.shape[1]26 for x in range(0,v-image_size+1,stride):27 for y in range(0,h-image_size+1,stride):28 sub_train = train[x:x+image_size,y:y+image_size]29 sub_label = label[x:x+image_size,y:y+image_size]30 if dim == 3: 31 sub_train = sub_train.reshape(image_size,image_size,3)32 sub_label = sub_label.reshape(image_size,image_size,3)33 else:34 sub_train = sub_train.reshape(image_size,image_size,1)35 sub_label = sub_label.reshape(image_size,image_size,1)36 sub_X_train.append(sub_train)37 sub_Y_train.append(sub_label)38 # ========= VERIFICATION ===========39 # cv2.imshow('image',sub_train)40 # cv2.waitKey(0)41 #convert to numpy array42 sub_X_train = np.array(sub_X_train)43 sub_Y_train = np.array(sub_Y_train)44 return sub_X_train, sub_Y_train45def load_test(scale=3, dim=3):46 dirname = './input/'47 dir_list = os.listdir(dirname)48 #load the data49 images = [cv2.cvtColor(cv2.imread(os.path.join(dirname,img)),cv2.IMREAD_COLOR) for img in dir_list if img != ".DS_Store"]50 images = [img[0:img.shape[0]-np.remainder(img.shape[0],scale),0:img.shape[1]-np.remainder(img.shape[1],scale)] for img in images]51 X_test = images.copy()52 Y_test = images.copy()53 #downsample and upsample to create the LR images54 pre_tests = [cv2.resize(img, None, fx=1/scale, fy=1/scale, interpolation=cv2.INTER_CUBIC) for img in X_test]55 X_test = [cv2.resize(img, None, fx=scale/1, fy=scale/1, interpolation=cv2.INTER_CUBIC) for img in pre_tests]56 #reshape images to add the third channel57 if dim == 3: 58 pre_tests = [img.reshape(img.shape[0],img.shape[1],3) for img in pre_tests]59 X_test = [img.reshape(img.shape[0],img.shape[1],3) for img in X_test] 60 Y_test = [img.reshape(img.shape[0],img.shape[1],3) for img in Y_test] 61 else:62 pre_tests = [img.reshape(img.shape[0],img.shape[1],1) for img in pre_tests]63 X_test = [img.reshape(img.shape[0],img.shape[1],1) for img in X_test] 64 Y_test = [img.reshape(img.shape[0],img.shape[1],1) for img in Y_test] ...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run avocado automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful