Best Python code snippet using avocado_python
extra_img.py
Source:extra_img.py
...14from scipy.misc import imresize15WIDTH, HEIGHT = 224, 22416def load_image(path):17 return imresize(imread(path), (HEIGHT, WIDTH))18def load_test(base):19 paths = glob.glob('{}*.png'.format(base))20 print('Reading images...')21 for i, path in tqdm(enumerate(paths), total=len(paths)):22 datagen = ImageDataGenerator(23 rotation_range=20,24 width_shift_range=0.2,25 height_shift_range=0.2,26 shear_range=0.1,27 zoom_range=0.1,28 horizontal_flip=False,29 fill_mode='nearest')30 id = os.path.basename(path)31 img = load_image(path)32 x = img_to_array(img) # this is a Numpy array with shape (3, 150, 150)33 x = x.reshape((1,) + x.shape) # this is a Numpy array with shape (1, 3, 150, 150)34 # the .flow() command below generates batches of randomly transformed images35 # and saves the results to the `preview/` directory36 i = 037 if (base == 'database/0/'):38 dir = 'train/0'39 elif(base == 'database/1/'):40 dir = 'train/1'41 elif(base == 'database/2/'):42 dir = 'train/2'43 elif(base == 'database/3/'):44 dir = 'train/3'45 elif(base == 'database/4/'):46 dir = 'train/4'47 elif(base == 'database/5/'):48 dir = 'train/5'49 elif(base == 'database/6/'):50 dir = 'train/6'51 elif(base == 'database/7/'):52 dir = 'train/7'53 elif(base == 'database/8/'):54 dir = 'train/8'55 elif(base == 'database/9/'):56 dir = 'train/9'57 elif(base == 'database/a/'):58 dir = 'train/10'59 elif(base == 'database/b/'):60 dir = 'train/11'61 elif(base == 'database/c/'):62 dir = 'train/12'63 elif(base == 'database/d/'):64 dir = 'train/13'65 elif(base == 'database/e/'):66 dir = 'train/14'67 elif(base == 'database/f/'):68 dir = 'train/15'69 elif(base == 'database/g/'):70 dir = 'train/16'71 elif(base == 'database/h/'):72 dir = 'train/17'73 elif(base == 'database/i/'):74 dir = 'train/18'75 elif(base == 'database/j/'):76 dir = 'train/19'77 elif(base == 'database/k/'):78 dir = 'train/20'79 elif(base == 'database/l/'):80 dir = 'train/21'81 elif(base == 'database/m/'):82 dir = 'train/22'83 elif(base == 'database/n/'):84 dir = 'train/23'85 elif(base == 'database/o/'):86 dir = 'train/24'87 elif(base == 'database/p/'):88 dir = 'train/25'89 elif(base == 'database/q/'):90 dir = 'train/26'91 elif(base == 'database/r/'):92 dir = 'train/27'93 elif(base == 'database/s/'):94 dir = 'train/28'95 elif(base == 'database/t/'):96 dir = 'train/29'97 elif(base == 'database/u/'):98 dir = 'train/30'99 elif(base == 'database/v/'):100 dir = 'train/31'101 elif(base == 'database/w/'):102 dir = 'train/32'103 elif(base == 'database/x/'):104 dir = 'train/33'105 elif(base == 'database/y/'):106 dir = 'train/34'107 elif(base == 'database/z/'):108 dir = 'train/35'109 # print (dir)110 for batch in datagen.flow(x, batch_size=1,111 save_to_dir=dir, save_prefix='gesture', save_format='jpg'):112 i += 1113 if i > 5:114 break # otherwise the generator would loop indefinitely115load_test('database/0/')116load_test('database/1/')117load_test('database/2/')118load_test('database/3/')119load_test('database/4/')120load_test('database/5/')121load_test('database/6/')122load_test('database/7/')123load_test('database/8/')124load_test('database/9/')125load_test('database/a/')126load_test('database/b/')127load_test('database/c/')128load_test('database/d/')129load_test('database/e/')130load_test('database/f/')131load_test('database/g/')132load_test('database/h/')133load_test('database/i/')134load_test('database/j/')135load_test('database/k/')136load_test('database/l/')137load_test('database/m/')138load_test('database/n/')139load_test('database/o/')140load_test('database/p/')141load_test('database/q/')142load_test('database/r/')143load_test('database/s/')144load_test('database/t/')145load_test('database/u/')146load_test('database/v/')147load_test('database/w/')148load_test('database/x/')149load_test('database/y/')...
split_data.py
Source:split_data.py
1import json2import shutil34path = "E:/Dataset/manipulated_sequences/FaceShifter/c40/videos/"5path_dict = []67# with open("D:/PycharmProjects/Make_dataset/test.json",'r') as load_test:8# load_dict = json.load(load_test)9# print(load_dict)10# print(len(load_dict))11# for i in range(len(load_dict)):12# # print(load_dict[i])13# path_temp = path + str(load_dict[i][0]) + "_" + str(load_dict[i][1]) + ".mp4"14# path_dict.append(path_temp)15# print(path_dict)1617# with open("D:/PycharmProjects/Make_dataset/train.json",'r') as load_test:18# load_dict = json.load(load_test)19# print(load_dict)20# print(len(load_dict))21# for i in range(len(load_dict)):22# # print(load_dict[i])23# path_temp = path + str(load_dict[i][0]) + "_" + str(load_dict[i][1]) + ".mp4"24# path_dict.append(path_temp)25# print(path_dict)262728with open("D:/PycharmProjects/Make_dataset/val.json",'r') as load_test:29 load_dict = json.load(load_test)30 print(load_dict)31 print(len(load_dict))32 for i in range(len(load_dict)):33 # print(load_dict[i])34 path_temp = path + str(load_dict[i][1]) + "_" + str(load_dict[i][0]) + ".mp4"35 path_dict.append(path_temp)36 print(path_dict)37383940filepath = "E:/Dataset/manipulated_sequences/FaceShifter/c40/val"41for files in path_dict:
...
SpikeForecast.py
Source:SpikeForecast.py
1from xgboost import XGBClassifier2import matplotlib.pyplot as plt3from sklearn.preprocessing import StandardScaler4from sklearn.model_selection import GridSearchCV5import numpy6def spike_forecast(load_train, spike_train, load_test):7 scaler1 = StandardScaler()8 load_train = numpy.reshape(load_train, [-1, 1])9 load_test = numpy.reshape(load_test, [-1, 1])10 spike_train = numpy.reshape(spike_train, [-1, 1])11 scaler1.fit(load_train)12 load_train = scaler1.transform(load_train)13 load_test = scaler1.transform(load_test)14 print(load_train[0:24])15 print(spike_train[0:24])16 clf = XGBClassifier()17 clf.fit(load_train, spike_train.ravel())18 spike_fore = clf.predict(load_test)...
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!