How to use get_possible_values method in avocado

Best Python code snippet using avocado_python

gibbs_fuzzy.py

Source:gibbs_fuzzy.py Github

copy

Full Screen

...40 if obj_index % 2 == 0:41 cl = [obj_index, obj_index+1]42 else:43 cl = [obj_index-1, obj_index]44 possible_values = get_possible_values(obj_index=obj_index, data=data, g_values=g_values)[0]45 n = len(possible_values) - 146 for v_ind, v in enumerate(possible_values):47 l_p.append(1.)48 for obj in cl:49 obj_s = data[obj][0]50 psi_list = data[obj][1]51 for s, psi_val in zip(obj_s, psi_list):52 accuracy = accuracy_list[s]53 psi_ind = obj_s.index(s)54 g = g_values[obj][1][psi_ind]55 if (obj == obj_index and g == 1) or (obj != obj_index and g == 0):56 if psi_val == v:57 l_p[v_ind] *= accuracy58 else:59 l_p[v_ind] *= (1-accuracy)/n60 norm_const = sum(l_p)61 for v_ind in range(len(possible_values)):62 l_p[v_ind] /= norm_const63 mult_trial = list(np.random.multinomial(1, l_p, size=1)[0])64 v_new_ind = mult_trial.index(1)65 v_new = possible_values[v_new_ind]66 obj_values.update({obj_index: v_new})67 prob.update({obj_index: l_p})68 for obj in cl:69 obj_s = data[obj][0]70 psi_list = data[obj][1]71 for s, psi_val in zip(obj_s, psi_list):72 psi_ind = obj_s.index(s)73 g = g_values[obj][1][psi_ind]74 if (obj == obj_index and g == 1) or (obj != obj_index and g == 0):75 c_prev = counts[obj][1][psi_ind]76 c_new = 1 if psi_val == v_new else 077 if c_new != c_prev:78 counts[obj][1][psi_ind] = c_new79def update_g(s, obj_index, g_values, pi_prob, obj_values, accuracy, counts, data):80 l_p = []81 possible_values = [0, 1]82 cluster = obj_index/283 psi_index = data[obj_index][0].index(s)84 psi_val = data[obj_index][1][psi_index]85 g_prev = g_values[obj_index][1][psi_index]86 for g in possible_values:87 pr_pi = pi_prob[cluster]**g*(1-pi_prob[cluster])**(1-g)88 if g == 1:89 g_values[obj_index][1][psi_index] = 190 n = len(get_possible_values(obj_index=obj_index, data=data, g_values=g_values)[0]) - 191 if psi_val == obj_values[obj_index]:92 pr_pi *= accuracy93 else:94 if n == 0:95 pr_pi *= 0.96 else:97 pr_pi *= (1-accuracy)/n98 else:99 g_values[obj_index][1][psi_index] = 0100 if obj_index % 2 == 0:101 n = len(get_possible_values(obj_index=obj_index+1, data=data, g_values=g_values)[0]) - 1102 if psi_val == obj_values[obj_index+1]:103 pr_pi *= accuracy104 else:105 if n == 0:106 pr_pi *= 0.107 else:108 pr_pi *= (1-accuracy)/n109 else:110 n = len(get_possible_values(obj_index=obj_index-1, data=data, g_values=g_values)[0]) - 1111 if psi_val == obj_values[obj_index-1]:112 pr_pi *= accuracy113 else:114 if n == 0:115 pr_pi *= 0.116 else:117 pr_pi *= (1-accuracy)/n118 l_p.append(pr_pi)119 norm_const = sum(l_p)120 if l_p[0] == l_p[1]:121 g_new = np.random.binomial(1, pi_prob[cluster], 1)[0]122 else:123 l_p[0] /= norm_const124 l_p[1] /= norm_const125 g_new = np.random.binomial(1, l_p[1], 1)[0]126 if g_new != g_prev:127 g_values[obj_index][1][psi_index] = g_new128 if g_new == 1:129 if psi_val == obj_values[obj_index]:130 counts[obj_index][1][psi_index] = 1131 else:132 counts[obj_index][1][psi_index] = 0133 else:134 if obj_index % 2 == 0:135 if psi_val == obj_values[obj_index+1]:136 counts[obj_index][1][psi_index] = 1137 else:138 counts[obj_index][1][psi_index] = 0139 else:140 if psi_val == obj_values[obj_index-1]:141 counts[obj_index][1][psi_index] = 1142 else:143 counts[obj_index][1][psi_index] = 0144 else:145 g_values[obj_index][1][psi_index] = g_prev146def get_pi(cl_ind, g_values, data):147 cl = [cl_ind*2, cl_ind*2+1]148 count_p, count_m = 0, 0149 for obj in cl:150 for g in g_values[obj][1]:151 if g == 1:152 count_p += 1153 else:154 count_m += 1155 pi_new = beta.rvs(count_p + gamma1, count_m + gamma2, size=1)[0]156 return pi_new157def get_a(counts, s_ind):158 count_p, count_m = 0, 0159 for obj in counts.keys():160 sources = counts[obj][0]161 if s_ind not in sources:162 continue163 c_ind = sources.index(s_ind)164 c = counts[obj][1][c_ind]165 if c == 1:166 count_p += 1167 else:168 count_m += 1169 a_new = beta.rvs(count_p + alpha1, count_m + alpha2, size=1)[0]170 return a_new171def get_possible_values(obj_index, data, g_values):172 if obj_index % 2 == 0:173 cl = [obj_index, obj_index+1]174 else:175 cl = [obj_index-1, obj_index]176 possible_values = []177 values = []178 for obj in cl:179 obj_obs = data[obj][1]180 obj_g_values = g_values[obj][1]181 for val, g in zip(obj_obs, obj_g_values):182 if (g == 1 and obj == obj_index) \183 or (g == 0 and obj != obj_index):184 if val not in possible_values:185 possible_values.append(val)186 values.append(val)187 possible_values = sorted(possible_values)188 return [possible_values, values]189def get_metrics(data, gt, prob, g_values):190 dist = 0.191 gt_objects = gt.keys()192 norm_const = len(gt_objects)193 pres_count = 0.194 for obj in gt_objects:195 possible_values = get_possible_values(obj_index=obj, data=data, g_values=g_values)[0]196 # this 'if' only for getting accuracy197 if len(possible_values) == 1:198 norm_const -= 1199 continue200 try:201 gt_val_ind = possible_values.index(gt[obj])202 except ValueError:203 norm_const -= 1204 continue205 obj_prob = prob[obj]206 dist += obj_prob[gt_val_ind]207 obj_ind = obj_prob.index(max(obj_prob))208 if gt_val_ind == obj_ind:209 pres_count += 1...

Full Screen

Full Screen

sudokuHS.py

Source:sudokuHS.py Github

copy

Full Screen

...32 row_values += '%.2f ' % cell['value']33 print row_values34 row_values = ""35 print ""36def get_possible_values(x,y):37 values = [1,2,3,4,5,6,7,8,9]38 #print values39 # Row40 for cell in sudoku[x]:41 42 if not cell['final']:43 continue44 current_value = cell['value']45 46 if current_value != 0 and current_value in values:47 ##print "index:" + str(values.index(current_value))48 values.remove(current_value)49 #print values50 # Column51 for i in range(9):52 if not sudoku[i][y]['final']:53 continue54 current_value = sudoku[i][y]['value']55 56 if current_value != 0 and current_value in values:57 ##print "index:" + str(values.index(current_value))58 values.remove(current_value)59 60 # Sector61 sector_index_x = x / 3 * 362 sector_index_y = y / 3 * 363 #print values64 for i in range(sector_index_x, sector_index_x + 3):65 for j in range(sector_index_y, sector_index_y + 3):66 67 if not sudoku[i][j]['final']:68 continue69 current_value = sudoku[i][j]['value']70 if current_value != 0 and current_value in values:71 values.remove(current_value)72 #print values73 return values74def choose_cell_randomly():75 """ Get the first available cell """76 cell = {'x': 0, 'y': 0}77 for i in range(9):78 for j in range(9):79 if not sudoku[i][j]["final"]:80 return {'x': i, 'y': j}81 return cell82# Value for first iteration83def calc_value(cell):84 if len(cell['possible_values']) == 1:85 cell['value'] = cell['possible_values'][0]86 cell['final'] = True87 cell['possible_values'] = []88 return cell89 else:90 cell['value'] = min(cell['possible_values']) + HMRC * (max(cell['possible_values']) - min(cell['possible_values']))91 #cell['final'] = False92 #cell['possible_values'] = 93 return cell94def fill_up():95 possible_values = []96 for i in range(len(sudoku)):97 for j in range(len(sudoku[i])):98 if not sudoku[i][j]['final']:99 sudoku[i][j]['possible_values'] = get_possible_values(i, j)100 #print "{0} {1}".format(i, j)101 #print possible_values102 sudoku[i][j] = calc_value(sudoku[i][j])103def new_value(cell, iterations):104 values = [cell['value'], cell['value']]105 values[0] += HMRC * PAR * 0.5 * iterations106 values[1] -= HMRC * PAR * 0.5 * iterations107 if int(values[0]) in cell['possible_values']:108 cell['value'] = values[0]109 return cell110 elif int(values[1]) in cell['possible_values']:111 cell['value'] = values[1]112 return cell113 return cell114# number of iteration over a cell value115def num_iterations(cell):116 return (cell['value'] - cell['possible_values'][0]) / ( HMRC * PAR * .5 )117# Get next value for all cells118def iterate():119 possible_values = []120 for i in range(len(sudoku)):121 for j in range(len(sudoku[i])):122 if not sudoku[i][j]['final']:123 #possible_values = get_possible_values(i, j)124 iterations = num_iterations(sudoku[i][j])125 print sudoku[i][j]['value']126 print iterations127 sudoku[i][j] = new_value(sudoku[i][j], iterations)128 #sudoku[i][j]['possible_values'] = get_possible_values(i, j)129 # Mark new final values130 for i in range(len(sudoku)):131 for j in range(len(sudoku[i])):132 sudoku[i][j]['possible_values'] = get_possible_values(i, j)133def solve():134 display()135 fill_up()136 display()137 iterate()138 display()139def main():140 #display(sudoku)141 ##print get_possible_values(7,0) 142 solve()143if __name__ == '__main__':...

Full Screen

Full Screen

day3p2.py

Source:day3p2.py Github

copy

Full Screen

...56 """57 Converts binary strings to decimal58 """59 return int(binary_str, 2)60def get_possible_values(filename, bit_str):61 """62 Creates a returns of all the possible lists from the 63 given bit string64 """65 possible_strings = []66 with open(filename) as file:67 for line in file:68 if line.strip()[:len(bit_str)] == bit_str:69 possible_strings.append(line.strip())70 return possible_strings71def oxygen_generator_rating(filename):72 """73 Calculates the oxygen generator rating74 """75 bit_str = ""76 bit_index = 077 bit = get_popular_bit_file(filename, bit_index)78 bit_str += str(bit)79 bit_index += 180 possible_values = get_possible_values(filename, bit_str)81 while len(possible_values) != 1:82 bit = get_popular_bit_list(possible_values, bit_index)83 bit_str += str(bit)84 bit_index += 185 possible_values = get_possible_values(filename, bit_str)86 return possible_values[0]87def co2_scrubber_rating(filename):88 """89 Calculates the CO2 scrubber rating90 """91 bit_str = ""92 bit_index = 093 bit = 094 if get_popular_bit_file(filename, bit_index) == 0:95 bit = 196 bit_str += str(bit)97 bit_index += 198 possible_values = get_possible_values(filename, bit_str)99 while len(possible_values) != 1:100 bit = get_least_popular_bit_list(possible_values, bit_index)101 bit_str += str(bit)102 bit_index += 1103 possible_values = get_possible_values(filename, bit_str)104 return possible_values[0]105def life_support_rating(filename):106 """107 Determines the life support rating after converting the 108 oxygen rating and CO2 scrubber rating from binary to 109 decimal and returns it110 """111 oxygen_rating = binary_to_decimal(oxygen_generator_rating(filename))112 co2_rating = binary_to_decimal(co2_scrubber_rating(filename))113 return oxygen_rating * co2_rating114def main():115 # print(get_popular_bit("day3small.txt", 1)) 116 # print(get_gamma_binary("day3small.txt"))117 # print(get_epsilon_binary("day3small.txt"))118 # print(binary_to_decimal('10110'))119 # print(binary_to_decimal('01001'))120 # print(power_consumption("day3small.txt"))121 # print(power_consumption("day3.txt"))122 # print(get_possible_values("day3small.txt", "10111"))123 # print(oxygen_generator_rating("day3small.txt"))124 # print(co2_scrubber_rating("day3small.txt"))125 print(life_support_rating("day3.txt"))126if __name__ == "__main__":...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run avocado automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful