How to use add_argparser method in avocado

Best Python code snippet using avocado_python

argparser.py

Source:argparser.py Github

copy

Full Screen

...15 parser.add_argument('--model', help="Path to model to evaluate")16 parser.add_argument('--splits', type=str, default="random_test", choices=["random_test", "temporal_test", "train", "val"],17 help='The split to use for validation')18 if add_argparser:19 parser = add_argparser(parser)20 args, unk = parser.parse_known_args()21 args = vars(args)22 with open(os.path.join(args["model"], "model.json"), "r") as f:23 model_args = json.load(f)24 25 with open(os.path.join(args["model"], "dataset.json"), "r") as f:26 ds_args = json.load(f)27 with open(os.path.join(args["model"], "train_config.json"), "r") as f:28 train_args = json.load(f)29 train_args = merge_configs(train_args, args)30 train_args["splits"] = [args["splits"]]31 train_args["load_path"] = args["model"]32 33 return train_args, model_args, ds_args34def parse_ecg_args(m=None, d=None, t=None, o=None, add_argparser = None) -> dict:35 parser = argparse.ArgumentParser(add_help=True,36 description='Train model to predict electrolyte concentrations from ecg tracing.')37 general_parser = parser.add_argument_group("General")38 general_parser.add_argument('--folder', type=str, default="./model/", help="Path to store the output at (eg. model, evaluations)")39 general_parser.add_argument('--gpu_id', type=positive_int, default=0, help="Id of the gpu to use.")40 general_parser.add_argument('--m', help="Path to the json config file of the model")41 general_parser.add_argument('--d', help="Path to the json config file of the dataset")42 general_parser.add_argument("--seed", type=int, default=np.random.randint(0, 10000), help="Seed to use for pytorch.")43 optimizer_parser = parser.add_argument_group("Optimizer")44 optimizer_parser.add_argument("--lr", type=float, default=0.001, help="Learning rate to use for the optimizer")45 optimizer_parser.add_argument("--patience", type=positive_int, default=7, help="Patience for lr scheduler")46 optimizer_parser.add_argument("--lr_factor", type=float, default=0.1, help="Factor to decrease lr by.")47 optimizer_parser.add_argument("--min_lr", type=float, default=1e-7, help="Minimum lr to stop.")48 dset_parser = parser.add_argument_group("Dataset")49 dset_parser.add_argument("--train_split", type=float, default=0.9, help="Amount of data to use for train split.")50 dset_parser.add_argument("--valid_split", type=float, default=0.1, help="Amount of data to use for validation split.")51 dset_parser.add_argument("--normalize", action="store_true", help="Normalizes the targets to mean 0 and variance 1")52 dset_parser.add_argument("--log_transform", action="store_true", help="Log transforms the target.")53 dset_parser.add_argument("--batch_size", type=positive_int, default=32, help="Batch size for training.")54 train_parser = parser.add_argument_group("Training")55 train_parser.add_argument("--task", default="regression", choices=["regression", "classification", "ordinal", "gaussian"], help="Method to use for training")56 train_parser.add_argument("--epochs", type=positive_int, default=30, help="Number of epochs to run training for.")57 train_parser.add_argument("--buckets", type=float, nargs="+", default=None, help="If given, uses these buckets/intervals to discretize targets for example for classification or weighting")58 train_parser.add_argument("--buckets_linspace", type=float, nargs=3, default=None, help="Constructs the buckets in linspace(lower, upper, steps) by passing the arguments in that order")59 train_parser.add_argument("--weighted", action="store_true", help="Use weighted training, requires specification of buckets")60 train_parser.add_argument("--use_metadata", action="store_true", help="Additionally uses age and sex metadata as input to the model.")61 train_parser.add_argument("--even_split", action="store_true", help="Use even split of training data, requires specification of buckets")62 train_parser.add_argument("--burnin", type=int, default=0, help="Set the burnin for Gaussian models.")63 if add_argparser:64 parser = add_argparser(parser)65 args, unk = parser.parse_known_args()66 args = vars(args)67 # Check for unknown options68 if unk:69 warn("Unknown arguments:" + str(unk) + ".")70 # load the model dict71 model_json = m if m else args["m"]72 with open(model_json, "r") as f:73 model_args = json.load(f)74 75 # load the dataset dict76 dset_json = d if d else args["d"]77 with open(dset_json, "r") as f:78 ds_args = json.load(f)...

Full Screen

Full Screen

check_answer.py

Source:check_answer.py Github

copy

Full Screen

1import argparse2import cv23import numpy as np4def add_argparser():5 parser = argparse.ArgumentParser()6 parser.add_argument('arg1', 'test pic file')7 parser.add_argument('arg2', 'answer pic file')8 return parser9def is_correct(src, dst):10 im = cv2.imread(src)11 dst_im = cv2.imread(dst)12 return np.array_equal(im, dst_im)13def main():14 parser = add_argparser()15 args = parser.parse_args()16 src = args.arg117 dst = args.arg218 ans = 'Correct!' if is_correct(src, dst) else 'NOT Correct!'19 print(ans)20 return21if __name__ == '__main__':...

Full Screen

Full Screen

read_pic.py

Source:read_pic.py Github

copy

Full Screen

1import argparse2import cv23import numpy as np4def add_argparser():5 parser = argparse.ArgumentParser()6 parser.add_argument('arg1', 'pic reading file')7 return parser8def is_correct(src, dst):9 im = cv2.imread(src)10 dst_im = cv2.imread(dst)11 return np.array_equal(im, dst_im)12def read():13 parser = add_argparser()14 args = parser.parse_args()15 src = args.arg116 return17def main():18 read()19if __name__ == '__main__':...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run avocado automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful