How to use update_func method in autotest

Best Python code snippet using autotest_python

sampling.py

Source:sampling.py Github

copy

Full Screen

1import time2from typing import List, Dict3import numpy as np4import pymc as mc5import theano as th6import theano.tensor as tt7class Sampler(object):8 def __init__(self, n_query:int, dim_features:int, update_func:str="pick_best", beta_demo:float=0.1, beta_pref:float=1.):9 """10 Initializes the sampler.11 :param n_query: Number of queries.12 :param dim_features: Dimension of feature vectors.13 :param update_func: options are "rank", "pick_best", and "approx". To use "approx", n_query must be 2. Will throw an assertion14 error otherwise.15 :param beta_demo: parameter measuring irrationality of human in providing demonstrations16 :param beta_pref: parameter measuring irrationality of human in selecting preferences17 """18 self.n_query = n_query19 self.dim_features = dim_features20 self.update_func = update_func21 self.beta_demo = beta_demo22 self.beta_pref = beta_pref23 if self.update_func=="approx":24 assert self.n_query == 2, "Cannot use approximation to update function if n_query > 2"25 elif not (self.update_func=="rank" or self.update_func=="pick_best"):26 raise Exception(update_func + " is not a valid update function.")27 # feature vectors from demonstrated trajectories28 self.phi_demos = np.zeros((1, self.dim_features))29 # a list of np.arrays containing feature difference vectors and which encode the ranking from the preference30 # queries31 self.phi_prefs = []32 self.f = None33 def load_demo(self, phi_demos:np.ndarray):34 """35 Loads the demonstrations into the Sampler.36 :param demos: a Numpy array containing feature vectors for each demonstration.37 Has dimension n_dem x self.dim_features.38 """39 self.phi_demos = phi_demos40 def load_prefs(self, phi: Dict, rank):41 """42 Loads the results of a preference query into the sampler.43 :param phi: a dictionary mapping rankings (0,...,n_query-1) to feature vectors.44 """45 result = []46 if self.update_func == "rank":47 result = [None] * len(rank)48 for i in range(len(rank)):49 result[i] = phi[rank[i]]50 elif self.update_func == "approx":51 result = phi[rank] - phi[1-rank]52 elif self.update_func == "pick_best":53 result, tmp = [phi[rank] - phi[rank]], []54 for key in sorted(phi.keys()):55 if key != rank:56 tmp.append(phi[key] - phi[rank])57 result.extend(tmp)58 self.phi_prefs.append(np.array(result))59 def clear_pref(self):60 """61 Clears all preference information from the sampler.62 """63 self.phi_prefs = []64 def sample(self, N:int, T:int=1, burn:int=1000) -> List:65 """66 Returns N samples from the distribution defined by applying update_func on the demonstrations and preferences67 observed thus far.68 :param N: number of samples to draw.69 :param T: if greater than 1, all samples except each T^{th} sample are discarded.70 :param burn: how many samples before the chain converges; these initial samples are discarded.71 :return: list of samples drawn.72 """73 x = tt.vector()74 x.tag.test_value = np.random.uniform(-1, 1, self.dim_features)75 # define update function76 start = time.time()77 if self.update_func=="approx":78 self.f = th.function([x], tt.sum([-tt.nnet.relu(-self.beta_pref * tt.dot(self.phi_prefs[i], x)) for i in range(len(self.phi_prefs))])79 + tt.sum(self.beta_demo * tt.dot(self.phi_demos, x)))80 elif self.update_func=="pick_best":81 self.f = th.function([x], tt.sum(82 [-tt.log(tt.sum(tt.exp(self.beta_pref * tt.dot(self.phi_prefs[i], x)))) for i in range(len(self.phi_prefs))])83 + tt.sum(self.beta_demo * tt.dot(self.phi_demos, x)))84 elif self.update_func=="rank":85 self.f = th.function([x], tt.sum( # summing across different queries86 [tt.sum( # summing across different terms in PL-update87 -tt.log(88 [tt.sum( # summing down different feature-differences in a single term in PL-update89 tt.exp(self.beta_pref * tt.dot(self.phi_prefs[i][j:, :] - self.phi_prefs[i][j], x))90 ) for j in range(self.n_query)]91 )92 ) for i in range(len(self.phi_prefs))])93 + tt.sum(self.beta_demo * tt.dot(self.phi_demos, x)))94 print("Finished constructing sampling function in " + str(time.time() - start) + "seconds")95 # perform sampling96 x = mc.Uniform('x', -np.ones(self.dim_features), np.ones(self.dim_features), value=np.zeros(self.dim_features))97 def sphere(x):98 if (x**2).sum()>=1.:99 return -np.inf100 else:101 return self.f(x)102 p = mc.Potential(103 logp = sphere,104 name = 'sphere',105 parents = {'x': x},106 doc = 'Sphere potential',107 verbose = 0)108 chain = mc.MCMC([x])109 chain.use_step_method(mc.AdaptiveMetropolis, x, delay=burn, cov=np.eye(self.dim_features)/5000)110 chain.sample(N*T+burn, thin=T, burn=burn, verbose=-1)111 samples = x.trace()112 samples = np.array([x/np.linalg.norm(x) for x in samples])113 # print("Finished MCMC after drawing " + str(N*T+burn) + " samples")...

Full Screen

Full Screen

pyxel_framework.py

Source:pyxel_framework.py Github

copy

Full Screen

...54 def update(self):55 if not self.is_update:56 return57 # print(f"update '{self.name}' background")58 self.update_func(self)59 def draw(self):60 if not self.is_draw:61 return62 pyxel.cls(self.col)63class ObjRect:64 def __init__(self, name, xy, wh, col, update_func=_pass):65 self.name = name66 self.xy = xy67 self.wh = wh68 self.col = col69 self.update_func = update_func70 self.is_update = True71 self.is_draw = True72 73 def is_hover(self, xy):74 return all(self.xy[i] <= xy[i] < self.xy[i]+self.wh[i] for i in range(2))75 def update(self):76 if not self.is_update:77 return78 self.update_func(self)79 def draw(self):80 if not self.is_draw:81 return82 pyxel.rect(*self.xy, *self.wh, self.col)83class ObjRectFrame:84 def __init__(self, name, xy, wh, col, update_func=_pass):85 self.name = name86 self.xy = xy87 self.wh = wh88 self.col = col89 self.update_func = update_func90 self.is_update = True91 self.is_draw = True92 93 def update(self):94 if not self.is_update:95 return96 self.update_func(self)97 def draw(self):98 if not self.is_draw:99 return100 pyxel.rectb(*self.xy, *self.wh, self.col)101class ObjImg:102 def __init__(self, name, xy, bank_num, uvwh, colkey=-1, update_func=_pass):103 self.name = name104 self.xy = xy105 self.bank_num = bank_num106 self.uvwh = uvwh107 self.colkey = colkey108 self.update_func = update_func109 self.is_update = True110 self.is_draw = True111 112 def is_hover(self, xy):113 return all(self.xy[i] <= xy[i] < self.xy[i]+self.uvwh[2+i] for i in range(2))114 def update(self):115 if not self.is_update:116 return117 self.update_func(self)118 def draw(self):119 if not self.is_draw:120 return121 pyxel.blt(*self.xy, self.bank_num, *self.uvwh, self.colkey)122class ObjText:123 def __init__(self, name, xy, text, col, update_func=_pass):124 self.name = name125 self.xy = xy126 self.text = text127 self.col = col128 self.update_func = update_func129 self.is_update = True130 self.is_draw = True131 132 def update(self):133 if not self.is_draw:134 return135 self.update_func(self)136 def draw(self):137 if not self.is_draw:138 return...

Full Screen

Full Screen

test_adapters.py

Source:test_adapters.py Github

copy

Full Screen

1import logging2from unittest import mock3import uuid4from driftwood.adapters import StatusUpdateAdapter5class TestStatusAdapter:6 def test_1(self):7 update_func = mock.MagicMock()8 log = logging.getLogger(uuid.uuid4().hex)9 adapter = StatusUpdateAdapter(update_func, log)10 update_func.assert_call_count == 011 adapter.info("test")12 update_func.assert_called_with(20, "INFO")13 update_func.assert_call_count == 114 adapter.debug("test")15 update_func.assert_call_count == 116 adapter.error("test")17 update_func.assert_called_with(40, "ERROR")18 update_func.assert_call_count == 219 adapter.warning("test")20 adapter.info("test")21 adapter.warning("test")22 update_func.assert_call_count == 223 ...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run autotest automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful