Best Python code snippet using autotest_python
main.py
Source: main.py
1#!/usr/bin/env python2# -*- coding: utf-8 -*-3# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.4#5# Licensed under the Apache License, Version 2.0 (the "License");6# you may not use this file except in compliance with the License.7# You may obtain a copy of the License at8#9# http://www.apache.org/licenses/LICENSE-2.010#11# Unless required by applicable law or agreed to in writing, software12# distributed under the License is distributed on an "AS IS" BASIS,13# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.14# See the License for the specific language governing permissions and15# limitations under the License.16import os17import warnings18warnings.simplefilter("ignore")19import tensorflow as tf20import horovod.tensorflow as hvd21from utils import hvd_utils22from runtime import Runner23from utils.cmdline_helper import parse_cmdline24if __name__ == "__main__":25 tf.logging.set_verbosity(tf.logging.ERROR)26 FLAGS = parse_cmdline()27 RUNNING_CONFIG = tf.contrib.training.HParams(28 mode=FLAGS.mode,29 # ======= Directory HParams ======= #30 log_dir=FLAGS.results_dir,31 model_dir=FLAGS.results_dir,32 summaries_dir=FLAGS.results_dir,33 data_dir=FLAGS.data_dir,34 data_idx_dir=FLAGS.data_idx_dir,35 # ========= Model HParams ========= #36 n_classes=1001,37 input_format='NHWC',38 compute_format=FLAGS.data_format,39 dtype=tf.float32 if FLAGS.precision == "fp32" else tf.float16,40 height=224,41 width=224,42 n_channels=3,43 # ======= Training HParams ======== #44 iter_unit=FLAGS.iter_unit,45 num_iter=FLAGS.num_iter,46 warmup_steps=FLAGS.warmup_steps,47 batch_size=FLAGS.batch_size,48 log_every_n_steps=FLAGS.display_every,49 lr_init=FLAGS.lr_init,50 lr_warmup_epochs=FLAGS.lr_warmup_epochs,51 weight_decay=FLAGS.weight_decay,52 momentum=FLAGS.momentum,53 loss_scale=FLAGS.loss_scale,54 label_smoothing=FLAGS.label_smoothing,55 use_cosine_lr=FLAGS.use_cosine_lr,56 use_static_loss_scaling=FLAGS.use_static_loss_scaling,57 distort_colors=False,58 59 # ======= Optimization HParams ======== #60 use_xla=FLAGS.use_xla,61 use_tf_amp=FLAGS.use_tf_amp,62 use_dali=FLAGS.use_dali,63 gpu_memory_fraction=FLAGS.gpu_memory_fraction,64 65 seed=FLAGS.seed,66 )67 # ===================================68 runner = Runner(69 # ========= Model HParams ========= #70 n_classes=RUNNING_CONFIG.n_classes,71 input_format=RUNNING_CONFIG.input_format,72 compute_format=RUNNING_CONFIG.compute_format,73 dtype=RUNNING_CONFIG.dtype,74 n_channels=RUNNING_CONFIG.n_channels,75 height=RUNNING_CONFIG.height,76 width=RUNNING_CONFIG.width,77 distort_colors=RUNNING_CONFIG.distort_colors,78 log_dir=RUNNING_CONFIG.log_dir,79 model_dir=RUNNING_CONFIG.model_dir,80 data_dir=RUNNING_CONFIG.data_dir,81 data_idx_dir=RUNNING_CONFIG.data_idx_dir,82 # ======= Optimization HParams ======== #83 use_xla=RUNNING_CONFIG.use_xla,84 use_tf_amp=RUNNING_CONFIG.use_tf_amp,85 use_dali=RUNNING_CONFIG.use_dali,86 gpu_memory_fraction=RUNNING_CONFIG.gpu_memory_fraction,87 seed=RUNNING_CONFIG.seed88 )89 if RUNNING_CONFIG.mode in ["train", "train_and_evaluate", "training_benchmark"]:90 runner.train(91 iter_unit=RUNNING_CONFIG.iter_unit,92 num_iter=RUNNING_CONFIG.num_iter,93 batch_size=RUNNING_CONFIG.batch_size,94 warmup_steps=RUNNING_CONFIG.warmup_steps,95 log_every_n_steps=RUNNING_CONFIG.log_every_n_steps,96 weight_decay=RUNNING_CONFIG.weight_decay,97 lr_init=RUNNING_CONFIG.lr_init,98 lr_warmup_epochs=RUNNING_CONFIG.lr_warmup_epochs,99 momentum=RUNNING_CONFIG.momentum,100 loss_scale=RUNNING_CONFIG.loss_scale, 101 label_smoothing=RUNNING_CONFIG.label_smoothing,102 use_static_loss_scaling=RUNNING_CONFIG.use_static_loss_scaling,103 use_cosine_lr=RUNNING_CONFIG.use_cosine_lr,104 is_benchmark=RUNNING_CONFIG.mode == 'training_benchmark',105 106 )107 if RUNNING_CONFIG.mode in ["train_and_evaluate", 'evaluate', 'inference_benchmark']:108 if RUNNING_CONFIG.mode == 'inference_benchmark' and hvd_utils.is_using_hvd():109 raise NotImplementedError("Only single GPU inference is implemented.")110 elif not hvd_utils.is_using_hvd() or hvd.rank() == 0:111 runner.evaluate(112 iter_unit=RUNNING_CONFIG.iter_unit if RUNNING_CONFIG.mode != "train_and_evaluate" else "epoch",113 num_iter=RUNNING_CONFIG.num_iter if RUNNING_CONFIG.mode != "train_and_evaluate" else 1,114 warmup_steps=RUNNING_CONFIG.warmup_steps,115 batch_size=RUNNING_CONFIG.batch_size,116 log_every_n_steps=RUNNING_CONFIG.log_every_n_steps,117 is_benchmark=RUNNING_CONFIG.mode == 'inference_benchmark'...
Check out the latest blogs from LambdaTest on this topic:
Before we discuss Scala testing, let us understand the fundamentals of Scala and how this programming language is a preferred choice for your development requirements.The popularity and usage of Scala are rapidly rising, evident by the ever-increasing open positions for Scala developers.
So, now that the first installment of this two fold article has been published (hence you might have an idea of what Agile Testing is not in my opinion), I’ve started feeling the pressure to explain what Agile Testing actually means to me.
Did you know that according to Statista, the number of smartphone users will reach 18.22 billion by 2025? Let’s face it, digital transformation is skyrocketing and will continue to do so. This swamps the mobile app development market with various options and gives rise to the need for the best mobile app testing tools
As a developer, checking the cross browser compatibility of your CSS properties is of utmost importance when building your website. I have often found myself excited to use a CSS feature only to discover that it’s still not supported on all browsers. Even if it is supported, the feature might be experimental and not work consistently across all browsers. Ask any front-end developer about using a CSS feature whose support is still in the experimental phase in most prominent web browsers. ????
The count of mobile users is on a steep rise. According to the research, by 2025, it is expected to reach 7.49 billion users worldwide. 70% of all US digital media time comes from mobile apps, and to your surprise, the average smartphone owner uses ten apps per day and 30 apps each month.
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!