How to use test_sets method in assertpy

Best Python code snippet using assertpy_python

linreg.py

Source: linreg.py Github

copy

Full Screen

1import csv2import numpy as np3import matplotlib.pyplot as plt4def read_data(filename):5 data = []6 with open(filename) as csvfile:7 reader = csv.reader(csvfile, quoting=csv.QUOTE_NONNUMERIC)8 for row in reader:9 data.append(row)10 return np.array(data)11def mse(l, train, test, train_regs, test_regs):12 tp = np.matrix.transpose(train)13 i = np.identity(len(train[0]))14 train_t = np.matrix.transpose(train_regs)[0]15 test_t = np.matrix.transpose(test_regs)[0]16 w = np.dot(np.matmul(np.linalg.inv((l * i) + np.matmul(tp, train)), tp), train_t)17 return np.mean(np.square(np.matmul(test, w) - test_t)) 18def task1(train_sets, train_regs, test_sets, test_regs):19 sets = ["100-10", "100-100", "1000-100", "forest_fire", "real_estate", "50(1000)-100", "100(1000)-100", "150(1000)-100"]20 print("Lambda\tMSE")21 for i in range(len(train_sets)):22 train_mse = []23 test_mse = []24 for l in range(0, 151):25 train_mse.append(mse(l, train_sets[i], train_sets[i], train_regs[i], train_regs[i]))26 test_mse.append(mse(l, train_sets[i], test_sets[i], train_regs[i], test_regs[i]))27 plt.plot(range(0, 151), train_mse, label = "Train")28 plt.plot(range(0, 151), test_mse, label = "Test")29 plt.legend()30 plt.ylabel("MSE")31 plt.xlabel("Lambda")32 plt.title(sets[i])33 plt.show()34 print(str(np.argmin(test_mse)) + "\t" + str(min(test_mse)))35def task2(train_sets, train_regs, test_sets, test_regs):36 print("Lambda\tMSE")37 for i in range(len(train_sets)):38 mse_folds = []39 for j in range (0, 10):40 test_nums = range(0, len(train_sets[i]))[j::10]41 train_nums = np.setdiff1d(range(0, len(train_sets[i])), test_nums)42 train = np.take(train_sets[i], train_nums, axis = 0)43 test = np.take(train_sets[i], test_nums, axis = 0)44 train_reg = np.take(train_regs[i], train_nums)45 test_reg = np.take(train_regs[i], test_nums)46 47 mses = []48 for l in range(0, 151):49 mses.append(mse(l, train, test, train_reg, test_reg))50 mse_folds.append(mses)51 opt_l = np.argmin(np.sum(mse_folds, axis = 0))52 test_mse = mse(l, train_sets[i], test_sets[i], train_regs[i], test_regs[i])53 print(str(opt_l) + "\t" + str(test_mse))54 return55def task3(train_sets, train_regs, test_sets, test_regs):56 print("Alpha\tBeta\tMSE")57 for i in range(0, 8):58 train = train_sets[i]59 tp = np.matrix.transpose(train)60 r = train_regs[i]61 l = np.linalg.eigvals(np.matmul(tp, train))62 m = 0 63 a = 164 b = 165 diff = 166 while (diff > .0000000001):67 s = np.linalg.inv(a * np.identity(len(train[0])) + b * np.matmul(tp, train))68 m = np.matrix.transpose(b * np.dot(np.matmul(s, tp), r))[0]69 c = np.sum(np.divide(b * l, (a + b * l)))70 newa = c /​ np.matmul(np.matrix.transpose(m), m)71 newb = 1.0/​((1.0/​(len(train) - c)) * np.sum(np.square(r - np.dot(m, tp))))72 diff = min(abs(a - newa), abs(b - newb))73 a = newa74 b = newb75 test_mse = np.mean(np.square(np.matmul(test_sets[i], m) - test_regs[i]))76 print(str(np.real(a)) + "\t" + str(np.real(b)) + "\t" + str(np.real(test_mse)))77 return78 79if __name__ == "__main__":80 train_sets = []81 train_sets.append(read_data("train-100-10.csv"))82 train_sets.append(read_data("train-100-100.csv")) 83 train_sets.append(read_data("train-1000-100.csv"))84 train_sets.append(read_data("train-forestfire.csv"))85 train_sets.append(read_data("train-realestate.csv"))86 train_sets.append(train_sets[2][:50])87 train_sets.append(train_sets[2][:100])88 train_sets.append(train_sets[2][:150])89 train_regs = []90 train_regs.append(read_data("trainR-100-10.csv"))91 train_regs.append(read_data("trainR-100-100.csv"))92 train_regs.append(read_data("trainR-1000-100.csv"))93 train_regs.append(read_data("trainR-forestfire.csv"))94 train_regs.append(read_data("trainR-realestate.csv"))95 train_regs.append(train_regs[2][:50])96 train_regs.append(train_regs[2][:100])97 train_regs.append(train_regs[2][:150])98 99 test_sets = []100 test_sets.append(read_data("test-100-10.csv"))101 test_sets.append(read_data("test-100-100.csv"))102 test_sets.append(read_data("test-1000-100.csv"))103 test_sets.append(read_data("test-forestfire.csv"))104 test_sets.append(read_data("test-realestate.csv"))105 test_sets.append(test_sets[2])106 test_sets.append(test_sets[2])107 test_sets.append(test_sets[2])108 test_regs = []109 test_regs.append(read_data("testR-100-10.csv"))110 test_regs.append(read_data("testR-100-100.csv"))111 test_regs.append(read_data("testR-1000-100.csv"))112 test_regs.append(read_data("testR-forestfire.csv"))113 test_regs.append(read_data("testR-realestate.csv"))114 test_regs.append(test_regs[2])115 test_regs.append(test_regs[2])116 test_regs.append(test_regs[2])117 task1(train_sets, train_regs, test_sets, test_regs)118 task2(train_sets, train_regs, test_sets, test_regs)...

Full Screen

Full Screen

constants.py

Source: constants.py Github

copy

Full Screen

1from pathlib import Path2# Paths3PACKAGE_DIR = Path(__file__).resolve().parent.parent4RESOURCES_DIR = PACKAGE_DIR /​ "resources"5TOOLS_DIR = RESOURCES_DIR /​ "tools"6DATA_DIR = RESOURCES_DIR /​ "data"7STANFORD_CORENLP_DIR = TOOLS_DIR /​ "stanford-corenlp-full-2018-10-05"8UCCA_DIR = TOOLS_DIR /​ "ucca-bilstm-1.3.10"9UCCA_PARSER_PATH = UCCA_DIR /​ "models/​ucca-bilstm"10TEST_SETS_PATHS = {11 ('asset_test', 'orig'): DATA_DIR /​ f'test_sets/​asset/​asset.test.orig',12 ('asset_test', 'refs'): [DATA_DIR /​ f'test_sets/​asset/​asset.test.simp.{i}' for i in range(10)],13 ('asset_valid', 'orig'): DATA_DIR /​ f'test_sets/​asset/​asset.valid.orig',14 ('asset_valid', 'refs'): [DATA_DIR /​ f'test_sets/​asset/​asset.valid.simp.{i}' for i in range(10)],15 ('turkcorpus_test', 'orig'): DATA_DIR /​ f'test_sets/​turkcorpus/​test.truecase.detok.orig',16 ('turkcorpus_test', 'refs'): [DATA_DIR /​ f'test_sets/​turkcorpus/​test.truecase.detok.simp.{i}' for i in range(8)],17 ('turkcorpus_valid', 'orig'): DATA_DIR /​ f'test_sets/​turkcorpus/​tune.truecase.detok.orig',18 ('turkcorpus_valid', 'refs'): [DATA_DIR /​ f'test_sets/​turkcorpus/​tune.truecase.detok.simp.{i}' for i in range(8)],19 ('turkcorpus_test_legacy', 'orig'): DATA_DIR /​ f'test_sets/​turkcorpus/​legacy/​test.8turkers.tok.norm',20 ('turkcorpus_test_legacy', 'refs'): [21 DATA_DIR /​ f'test_sets/​turkcorpus/​legacy/​test.8turkers.tok.turk.{i}' for i in range(8)22 ],23 ('turkcorpus_valid_legacy', 'orig'): DATA_DIR /​ f'test_sets/​turkcorpus/​legacy/​tune.8turkers.tok.norm',24 ('turkcorpus_valid_legacy', 'refs'): [25 DATA_DIR /​ f'test_sets/​turkcorpus/​legacy/​tune.8turkers.tok.turk.{i}' for i in range(8)26 ],27 ('pwkp_test', 'orig'): DATA_DIR /​ f'test_sets/​pwkp/​pwkp.test.orig',28 ('pwkp_test', 'refs'): [DATA_DIR /​ f'test_sets/​pwkp/​pwkp.test.simp'],29 ('pwkp_valid', 'orig'): DATA_DIR /​ f'test_sets/​pwkp/​pwkp.valid.orig',30 ('pwkp_valid', 'refs'): [DATA_DIR /​ f'test_sets/​pwkp/​pwkp.valid.simp'],31 ('hsplit_test', 'orig'): DATA_DIR /​ f'test_sets/​hsplit/​hsplit.tok.src',32 ('hsplit_test', 'refs'): [DATA_DIR /​ f'test_sets/​hsplit/​hsplit.tok.{i+1}' for i in range(4)],33 ('wikisplit_test', 'orig'): DATA_DIR /​ f'test_sets/​wikisplit/​wikisplit.test.untok.orig',34 ('wikisplit_test', 'refs'): [DATA_DIR /​ f'test_sets/​wikisplit/​wikisplit.test.untok.split'],35 ('wikisplit_valid', 'orig'): DATA_DIR /​ f'test_sets/​wikisplit/​wikisplit.valid.untok.orig',36 ('wikisplit_valid', 'refs'): [DATA_DIR /​ f'test_sets/​wikisplit/​wikisplit.valid.untok.split'],37 ('googlecomp_test', 'orig'): DATA_DIR /​ f'test_sets/​googlecomp/​googlecomp.test.orig',38 ('googlecomp_test', 'refs'): [DATA_DIR /​ f'test_sets/​googlecomp/​googlecomp.test.comp'],39 ('googlecomp_valid', 'orig'): DATA_DIR /​ f'test_sets/​googlecomp/​googlecomp.valid.orig',40 ('googlecomp_valid', 'refs'): [DATA_DIR /​ f'test_sets/​googlecomp/​googlecomp.valid.comp'],41 ('qats_test', 'orig'): DATA_DIR /​ f'test_sets/​qats/​qats.test.orig',42 ('qats_test', 'refs'): [DATA_DIR /​ f'test_sets/​qats/​qats.test.simp'],43}44SYSTEM_OUTPUTS_DIR = DATA_DIR /​ "system_outputs"45SYSTEM_OUTPUTS_DIRS_MAP = {46 "turkcorpus_test": SYSTEM_OUTPUTS_DIR /​ "turkcorpus/​test",47 "turkcorpus_valid": SYSTEM_OUTPUTS_DIR /​ "turkcorpus/​valid",48 "pwkp_test": SYSTEM_OUTPUTS_DIR /​ "pwkp/​test",49}50# Constants51VALID_TEST_SETS = list(set([test_set for test_set, language in TEST_SETS_PATHS.keys()])) + ['custom']52VALID_METRICS = [53 'bleu',54 'sari',55 'samsa',56 'fkgl',57 'sent_bleu',58 'f1_token',59 'sari_legacy',60 'sari_by_operation',61 'bertscore',62]...

Full Screen

Full Screen

controversy.py

Source: controversy.py Github

copy

Full Screen

1from cpath import data_path2from data_generator.tokenizer_b import FullTokenizerWarpper3from evaluation import *4from models.cnn_predictor import CNNPredictor5from models.controversy import *6def eval_all_contrv():7 ams_X, ams_Y = amsterdam.get_dev_data(False)8 clue_X, clue_Y = controversy.load_clueweb_testset()9 guardian_X, guardian_Y = controversy.load_guardian()10 models = []11 #models.append(("CNN/​Wiki", CNNPredictor("WikiContrvCNN")))12 models.append(("CNN/​Wiki", CNNPredictor("WikiContrvCNN_sigmoid", "WikiContrvCNN")))13 #models.append(("tlm/​wiki", get_wiki_doc_lm()))14 #models.append(("Bert/​Wiki", BertPredictor("WikiContrv2009")))15 #models.append(("Bert/​Wiki", BertPredictor("WikiContrv2009_only_wiki")))16 #models.append(("tlm/​dbpedia", get_dbpedia_contrv_lm()))17 #models.append(("tlm/​Guardian", get_guardian16_lm()))18 #models.append(("yw_may", get_yw_may()))19 #models.append(("Guardian2", get_guardian_selective_lm()))20 test_sets = []21 #test_sets.append(("Ams18", [ams_X, ams_Y]))22 test_sets.append(("Clueweb" ,[clue_X, clue_Y]))23 #test_sets.append(("Guardian", [guardian_X, guardian_Y]))24 for set_name, test_set in test_sets:25 dev_X, dev_Y = test_set26 print(set_name)27 for name, model in models:28 scores = model.score(dev_X)29 auc = compute_pr_auc(scores, dev_Y)30 #auc = compute_auc(scores, dev_Y)31 acc = compute_opt_acc(scores, dev_Y)32 prec = compute_opt_prec(scores, dev_Y)33 recall = compute_opt_recall(scores, dev_Y)34 f1 = compute_opt_f1(scores, dev_Y)35 print("{0}\t{1:.03f}\t{2:.03f}\t{3:.03f}\t{4:.03f}\t{5:.03f}".format(name, auc, prec, recall, f1, acc))36def dataset_stat():37 ams_X, ams_Y = amsterdam.get_dev_data(False)38 clue_X, clue_Y = controversy.load_clueweb_testset()39 guardian_X, guardian_Y = controversy.load_guardian()40 vocab_size = 3052241 vocab_filename = "bert_voca.txt"42 voca_path = os.path.join(data_path, vocab_filename)43 encoder = FullTokenizerWarpper(voca_path)44 test_sets = []45 test_sets.append(("Ams18", [ams_X, ams_Y]))46 test_sets.append(("Clueweb" ,[clue_X, clue_Y]))47 test_sets.append(("Guardian", [guardian_X, guardian_Y]))48 for set_name, test_set in test_sets:49 dev_X, dev_Y = test_set50 num_over_size = 051 length_list = []52 for doc in dev_X:53 tokens = encoder.encode(doc)54 if len(tokens) > 200:55 num_over_size += 156 length_list.append(len(tokens))57 print("{0} {1:.03f} {2:.03f}".format(set_name, num_over_size /​ len(dev_X), average(length_list)))58if __name__ == '__main__':...

Full Screen

Full Screen

Blogs

Check out the latest blogs from LambdaTest on this topic:

An Interactive Guide To CSS Hover Effects

Building a website is all about keeping the user experience in mind. Ultimately, it’s about providing visitors with a mind-blowing experience so they’ll keep coming back. One way to ensure visitors have a great time on your site is to add some eye-catching text or image animations.

How To Get Started With Cypress Debugging

One of the most important tasks of a software developer is not just writing code fast; it is the ability to find what causes errors and bugs whenever you encounter one and the ability to solve them quickly.

What will come after “agile”?

I think that probably most development teams describe themselves as being “agile” and probably most development teams have standups, and meetings called retrospectives.There is also a lot of discussion about “agile”, much written about “agile”, and there are many presentations about “agile”. A question that is often asked is what comes after “agile”? Many testers work in “agile” teams so this question matters to us.

A Complete Guide To CSS Houdini

As a developer, checking the cross browser compatibility of your CSS properties is of utmost importance when building your website. I have often found myself excited to use a CSS feature only to discover that it’s still not supported on all browsers. Even if it is supported, the feature might be experimental and not work consistently across all browsers. Ask any front-end developer about using a CSS feature whose support is still in the experimental phase in most prominent web browsers. ????

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run assertpy automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful