Best Python code snippet using assertpy_python
math.py
Source: math.py
...53 ["comm-mul", Mul(a, b), Mul(b, a)],54 ["assoc-add", Add(a, Add(b, c)), Add(Add(a, b), c)],55 ["assoc-mul", Mul(a, Mul(b, c)), Mul(Mul(a, b), c)],56 ["sub-canon", Sub(a, b), Add(a, Mul(-1, b))],57 # rw!("div-canon"; "(/ ?a ?b)" => "(* ?a (pow ?b -1))" if is_not_zero("?b")),58 # // rw!("canon-sub"; "(+ ?a (* -1 ?b))" => "(- ?a ?b)"),59 # // rw!("canon-div"; "(* ?a (pow ?b -1))" => "(/ ?a ?b)" if is_not_zero("?b")),60 ["zero-add", Add(a, 0), a],61 ["zero-mul", Mul(a, 0), 0],62 ["one-mul", Mul(a, 1), a],63 ["add-zero", a, Add(a, 0)],64 ["mul-one", a, Mul(a, 1)],65 ["cancel-sub", Sub(a, a), 0],66 # rw!("cancel-div"; "(/ ?a ?a)" => "1" if is_not_zero("?a")),67 ["distribute", Mul(a, Add(b, c)), Add(Mul(a, b), Mul(a, c))],68 ["factor", Add(Mul(a, b), Mul(a, c)), Mul(a, Add(b, c))],69 ["pow-mul", Mul(Pow(a, b), Pow(a, c)), Pow(a, Add(b, c))],70 # rw!("pow0"; "(pow ?x 0)" => "1"71 # if is_not_zero("?x")),72 ["pow1", Pow(x, 1), x],73 ["pow2", Pow(x, 2), Mul(x, x)],74 # rw!("pow-recip"; "(pow ?x -1)" => "(/ 1 ?x)"75 # if is_not_zero("?x")),76 # rw!("recip-mul-div"; "(* ?x (/ 1 ?x))" => "1" if is_not_zero("?x")),77 # rw!("d-variable"; "(d ?x ?x)" => "1" if is_sym("?x")),78 # rw!("d-constant"; "(d ?x ?c)" => "0" if is_sym("?x") if is_const_or_distinct_var("?c", "?x")),79 ["d-add", Diff(x, Add(a, b)), Add(Diff(x, a), Diff(x, b))],80 ["d-mul", Diff(x, Mul(a, b)), Add(Mul(a, Diff(x, b)), Mul(b, Diff(x, a)))],81 ["d-sin", Diff(x, Sin(x)), Cos(x)],82 ["d-cos", Diff(x, Cos(x)), Mul(-1, Sin(x))],83 # rw!("d-ln"; "(d ?x (ln ?x))" => "(/ 1 ?x)" if is_not_zero("?x")),84 # rw!("d-power";85 # "(d ?x (pow ?f ?g))" =>86 # "(* (pow ?f ?g)87 # (+ (* (d ?x ?f)88 # (/ ?g ?f))89 # (* (d ?x ?g)90 # (ln ?f))))"91 # if is_not_zero("?f")92 # if is_not_zero("?g")93 # ),94 ["i-one", Integral(1, x), x],95 # rw!("i-power-const"; "(i (pow ?x ?c) ?x)" =>96 # "(/ (pow ?x (+ ?c 1)) (+ ?c 1))" if is_const("?c")),97 ["i-cos", Integral(Cos(x), x), Sin(x)],98 ["i-sin", Integral(Sin(x), x), Mul(-1, Cos(x))],99 ["i-sum", Integral(Add(f, g), x), Add(Integral(f, x), Integral(g, x))],100 ["i-dif", Integral(Sub(f, g), x), Sub(Integral(f, x), Integral(g, x))],101 ["i-parts", Integral(Mul(a, b), x),102 Sub(Mul(a, Integral(b, x)), Integral(Mul(Diff(x, a), Integral(b, x)), x))],103]104# Turn the lists into rewrites105rules = list()106for l in list_rules:...
multi_normal.py
Source: multi_normal.py
1import numpy as np2import scipy.stats3from core.utils import verification4@verification('a1', 'aa', 'a1')5def pdf(mean: np.ndarray, cov: np.ndarray, x: np.ndarray) -> float:6 """7 Computes the pdf of a multivariate normal at the specified location.8 """9 p = scipy.stats.multivariate_normal.pdf(x.flatten(), mean.flatten(), cov, allow_singular=True)10 return p11@verification('a1', 'aa', 'ba', 'aa')12def posterior(mean: np.ndarray, cov:np.ndarray, x: np.ndarray, cov_known: np.ndarray) -> (np.ndarray, np.ndarray):13 """14 Computes the parameters of the posterior distribution in case the true covariance matrix is known.15 """16 n = len(x)17 mean_x = x.mean(axis=0)[:, None]18 inverse = np.linalg.inv(cov + (1 / n) * cov_known)19 mu_post = cov @ inverse * mean_x + (1 / n) * cov_known @ inverse @ mean20 cov_post = cov @ inverse @ cov_known * (1 / n)21 return np.diag(mu_post)[:, None], cov_post22@verification('a1', 'aa', 'a1', 'aa')23def kl_divergence(mean1: np.ndarray, cov1: np.ndarray, mean2: np.ndarray, cov2: np.ndarray) -> float:24 """25 Computes the KL-Divergence between two multivariate normal distributions.26 """27 # Removing zeros in diagonal of covariance matrix28 is_not_zero = (np.diag(cov1) != 0) & (np.diag(cov2) != 0)29 mean1 = mean1[is_not_zero, :]30 mean2 = mean2[is_not_zero, :]31 cov1 = cov1[is_not_zero, :][:, is_not_zero]32 cov2 = cov2[is_not_zero, :][:, is_not_zero]33 # Computing KL-divergence34 n = len(mean1)35 return 1 / 2 * (np.log(np.linalg.det(cov2) / np.linalg.det(cov1)) - n +36 np.trace(np.linalg.inv(cov2) @ cov1) +37 (mean2 - mean1).T @ np.linalg.inv(cov2) @ (mean2 - mean1))[0][0]38@verification('a1', 'ba')39def ttest_1sample(mean: np.ndarray, x: np.ndarray) -> float: # TODO: Check computation40 x = np.asarray(x)41 nobs, k_vars = x.shape42 mean_x = x.mean(0)43 cov = np.cov(x, rowvar=False, ddof=1)44 diff = mean_x - mean.flatten()45 t2 = nobs * diff.dot(np.linalg.solve(cov, diff))46 factor = (nobs - 1) * k_vars / (nobs - k_vars)47 statistic = t2 / factor48 df = (k_vars, nobs - k_vars)49 pvalue = scipy.stats.f.sf(statistic, df[0], df[1])50 return pvalue51if __name__ == '__main__':...
million.py
Source: million.py
1num = 10000002is_not_zero = True3iterated = 04while is_not_zero:5 num //= 26 iterated += 17 if num == 0:8 is_not_zero = False...
Check out the latest blogs from LambdaTest on this topic:
I was once asked at a testing summit, “How do you manage a QA team using scrum?” After some consideration, I realized it would make a good article, so here I am. Understand that the idea behind developing software in a scrum environment is for development teams to self-organize.
Collecting and examining data from multiple sources can be a tedious process. The digital world is constantly evolving. To stay competitive in this fast-paced environment, businesses must frequently test their products and services. While it’s easy to collect raw data from multiple sources, it’s far more complex to interpret it properly.
Pair testing can help you complete your testing tasks faster and with higher quality. But who can do pair testing, and when should it be done? And what form of pair testing is best for your circumstance? Check out this blog for more information on how to conduct pair testing to optimize its benefits.
Greetings folks! With the new year finally upon us, we’re excited to announce a collection of brand-new product updates. At LambdaTest, we strive to provide you with a comprehensive test orchestration and execution platform to ensure the ultimate web and mobile experience.
If you pay close attention, you’ll notice that toggle switches are all around us because lots of things have two simple states: either ON or OFF (in binary 1 or 0).
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!