Best Python code snippet using assertpy_python
Layout.py
Source:Layout.py
...65 return count66 def valid_big_hotel(self):67 loc = self.find_first_location('big_hotel')68 if loc != None:69 return (self.is_close_to(loc, 'recreational_area')70 and not self.is_close_to(loc, 'cemetery')71 and not self.is_close_to(loc, 'graveyard'))72 else:73 return True74 def valid_recreational_area(self):75 loc = self.find_first_location('recreational_area')76 if loc != None:77 return self.is_close_to(loc, 'lake')78 else:79 return True80 def valid_garbage_dump(self):81 return True82 def valid_housing_complex(self):83 loc = self.find_first_location('housing_complex')84 if loc != None:85 return (self.is_close_to(loc, 'recreational_area')86 and not self.is_close_to(loc, 'cemetery')87 and not self.is_close_to(loc, 'graveyard'))88 else:89 return True90 def update_building_location_options(self):91 return (92 self.update_garbage_dump()93 and self.update_recreational_area()94 and self.update_housing_complex()95 and self.update_big_hotel()96 )97 def update_garbage_dump(self):98 if self.find_first_location('garbage_dump') == None:99 return True100 possibilities = []101 for loc in self.next_locations_basic():102 if not(self.is_close_to(loc, 'housing_complex') or self.is_close_to(loc, 'big_hotel')):103 possibilities.append((loc))104 if len(possibilities) > 0:105 self.building_location_options['garbage_dump'] = possibilities106 return True107 else:108 return False109 def update_recreational_area(self):110 if self.find_first_location('recreational_area') == None:111 return True112 possibilities = []113 for loc in self.next_locations_basic():114 if self.is_close_to(loc, 'lake'):115 possibilities.append(loc)116 if len(possibilities) > 0:117 self.building_location_options['recreational_area'] = possibilities118 return True119 else:120 return False121 def update_housing_complex(self):122 if self.find_first_location('housing_complex') == None:123 return True124 possibilities = []125 for loc in self.next_locations_basic():126 if self.is_close_to(loc, 'recreational_area') and not self.is_close_to(loc, 'garbage_dump') and not self.is_close_to(loc, 'cemetery'):127 possibilities.append(loc)128 if len(possibilities) > 0:129 self.building_location_options['housing_complex']130 return True131 else:132 return False133 def update_big_hotel(self):134 if self.find_first_location('big_hotel') == None:135 return True136 possibilities = []137 for loc in self.next_locations_basic():138 if self.is_close_to(loc, 'recreational_area') and not self.is_close_to(loc, 'garbage_dump') and not self.is_close_to(loc, 'cemetery'):139 possibilities.append(loc)140 if len(possibilities) > 0:141 self.building_location_options['big_hotel'] = possibilities142 return True143 else:144 return False145 def get_next_locations(self, building):146 if self.forward_checking:147 return self.next_locations_forward_checking(building)148 else:149 return self.next_locations_basic()150 def next_locations_forward_checking(self, building):151 return self.building_location_options[building]152 def next_locations_basic(self):153 locations = []154 for i in range(3):155 for j in range(3):156 if self.grid[i][j] == None:157 locations.append((i, j))158 return locations159 def find_first_location(self, target):160 for row in range(3):161 for col in range(3):162 if self.grid[row][col] == target:163 return (row, col)164 return None165 def is_close_to(self, loc, target):166 for pair in [(-1, 0), (1, 0), (0, -1), (0, 1)]:167 x, y = loc[0] + pair[0], loc[1] + pair[1]168 if self.in_bounds(x, y) and self.grid[x][y] == target:169 return True170 return False171 def in_bounds(self, x, y):172 return (x >= 0 and x < 3 and y >= 0 and y < 3)173 def get_building_options(self):174 if self.forward_checking:175 return self.next_building_forward_checking()176 else:177 return self.next_buildings_basic()178 def next_building_forward_checking(self):179 options = [building for building in self.building_options]...
test_confusion_matrix.py
Source:test_confusion_matrix.py
...23 assert_that(cm.FN.shape[0]).is_equal_to(nsamples + 1)24 assert_that(cm.cutpoint(0.6)).is_equal_to(300)25 TOL = 1e-726 TPR = cm.TP / cm.P27 assert_that(TPR[0]).is_close_to(0.0, TOL)28 assert_that(TPR[460]).is_close_to(0.005, TOL)29 assert_that(TPR[-1]).is_close_to(0.006, TOL)30 tmp = cm.TP / (cm.TP + cm.FN)31 for i in range(cm.tpr.shape[0]):32 assert_that(TPR[i]).is_close_to(tmp[i], TOL)33 TNR = cm.TN / cm.N34 assert_that(TNR[0]).is_close_to(1.0, TOL)35 assert_that(TNR[460]).is_close_to(0.997806880130334, TOL)36 assert_that(TNR[-1]).is_close_to(0.9976188984272197, TOL)37 tmp = cm.TN / (cm.TN + cm.FP)38 for i in range(cm.tnr.shape[0]):39 assert_that(TNR[i]).is_close_to(tmp[i], TOL)40 with errstate(divide="ignore", invalid="ignore"):41 PPV = cm.TP / (cm.TP + cm.FP)42 assert_that(PPV[0]).is_close_to(nan, TOL)43 assert_that(PPV[460]).is_close_to(0.010869565217391304, TOL)44 assert_that(PPV[-1]).is_close_to(0.012, TOL)45 NPV = cm.TN / (cm.TN + cm.FN)46 assert_that(NPV[0]).is_close_to(0.9952030777053442, TOL)47 assert_that(NPV[460]).is_close_to(0.995216507136779, TOL)48 assert_that(NPV[-1]).is_close_to(0.9952203955435237, TOL)49 FNR = cm.FN / cm.P50 assert_that(FNR[0]).is_close_to(1.0, TOL)51 assert_that(FNR[460]).is_close_to(0.995, TOL)52 assert_that(FNR[-1]).is_close_to(0.994, TOL)53 tmp = cm.FN / (cm.FN + cm.TP)54 for i in range(cm.fnr.shape[0]):55 assert_that(FNR[i]).is_close_to(tmp[i], TOL)56 FPR = cm.FP / cm.N57 assert_that(FPR[0]).is_close_to(0.0, TOL)58 assert_that(FPR[460]).is_close_to(0.002193119869666019, TOL)59 assert_that(FPR[-1]).is_close_to(0.0023811015727802495, TOL)60 tmp = cm.FP / (cm.FP + cm.TN)61 for i in range(cm.fpr.shape[0]):62 assert_that(FPR[i]).is_close_to(tmp[i], TOL)63 with errstate(divide="ignore", invalid="ignore"):64 FDR = cm.FP / (cm.FP + cm.TP)65 assert_that(FDR[0]).is_close_to(nan, TOL)66 assert_that(FDR[460]).is_close_to(0.9891304347826086, TOL)67 assert_that(FDR[-1]).is_close_to(0.988, TOL)68 FOR = cm.FN / (cm.FN + cm.TN)69 assert_that(FOR[0]).is_close_to(0.004796922294655749, TOL)70 assert_that(FOR[460]).is_close_to(0.004783492863220949, TOL)71 assert_that(FOR[-1]).is_close_to(0.004779604456476268, TOL)72 ACC = (cm.TP + cm.TN) / (cm.P + cm.N)73 assert_that(ACC[0]).is_close_to(0.9952030777053442, TOL)74 assert_that(ACC[460]).is_close_to(0.9930444626727492, TOL)75 assert_that(ACC[-1]).is_close_to(0.9928621796255522, TOL)76 for i in range(len(cm.sensitivity)):77 assert_that(TPR[i]).is_close_to(cm.sensitivity[i], TOL)78 assert_that(TPR[i]).is_close_to(cm.recall[i], TOL)79 assert_that(TPR[i]).is_close_to(cm.tpr[i], TOL)80 for i in range(len(cm.specificity)):81 assert_that(TNR[i]).is_close_to(cm.specificity[i], TOL)82 assert_that(TNR[i]).is_close_to(cm.selectivity[i], TOL)83 assert_that(TNR[i]).is_close_to(cm.tnr[i], TOL)84 for i in range(len(cm.precision)):85 assert_that(PPV[i]).is_close_to(cm.precision[i], TOL)86 assert_that(PPV[i]).is_close_to(cm.ppv[i], TOL)87 assert_that(TNR[i]).is_close_to(cm.tnr[i], TOL)88 for i in range(len(cm.npv)):89 assert_that(NPV[i]).is_close_to(cm.npv[i], TOL)90 for i in range(len(cm.fnr)):91 assert_that(FNR[i]).is_close_to(cm.miss_rate[i], TOL)92 assert_that(FNR[i]).is_close_to(cm.fnr[i], TOL)93 for i in range(len(cm.fpr)):94 assert_that(FPR[i]).is_close_to(cm.fallout[i], TOL)95 assert_that(FPR[i]).is_close_to(cm.fpr[i], TOL)96 for i in range(len(cm.fdr)):97 assert_that(FDR[i]).is_close_to(cm.fdr[i], TOL)98 for i in range(len(cm.for_)):99 assert_that(FOR[i]).is_close_to(cm.for_[i], TOL)100 for i in range(len(cm.accuracy)):101 assert_that(ACC[i]).is_close_to(cm.accuracy[i], TOL)102def test_confusion_matrix_pr_curve():103 random = RandomState(8)104 ntrues = 1000105 nfalses = 207467106 true_samples = random.choice(ntrues + nfalses, ntrues, False)107 nsamples = 500108 samples = random.choice(ntrues + nfalses, nsamples, False)109 scores = random.randn(nsamples)110 idx = argsort(scores)111 cm = ConfusionMatrix(true_samples, nfalses, samples[idx])112 pr = cm.pr_curve113 assert_that(pr.recall[420]).is_close_to(0.005, TOL)114 assert_that(pr.precision[420]).is_close_to(0.011876484560570071, TOL)115 assert_that(pr.auc).is_close_to(4.98054484430107e-05, TOL)116def test_confusion_matrix_roc_curve():117 random = RandomState(8)118 ntrues = 1000119 nfalses = 207467120 true_samples = random.choice(ntrues + nfalses, ntrues, False)121 nsamples = 500122 samples = random.choice(ntrues + nfalses, nsamples, False)123 scores = random.randn(nsamples)124 idx = argsort(scores)125 cm = ConfusionMatrix(true_samples, nfalses, samples[idx])126 roc = cm.roc_curve127 assert_that(roc.fpr[420]).is_close_to(0.00200031812288215, TOL)128 assert_that(roc.tpr[420]).is_close_to(0.005, TOL)129 assert_that(roc.auc).is_close_to(4.762203145560528e-06, TOL)130def test_confusion_matrix_write_read(tmp_path: Path):131 random = RandomState(2)132 ntrues = 100133 nfalses = 100134 true_samples = random.choice(ntrues + nfalses, ntrues, False)135 nsamples = 100136 samples = random.choice(ntrues + nfalses, nsamples, False)137 scores = random.randn(nsamples)138 idx = argsort(scores)139 pr_auc = 0.22942490919917213140 roc_auc = 0.1277141 cm = ConfusionMatrix(true_samples, nfalses, samples[idx])142 assert_that(cm.pr_curve.auc).is_close_to(pr_auc, TOL)143 assert_that(cm.roc_curve.auc).is_close_to(roc_auc, TOL)144 cm.write_pickle(tmp_path / "cm.pkl")145 cm = ConfusionMatrix.read_pickle(tmp_path / "cm.pkl")146 assert_that(cm.pr_curve.auc).is_close_to(pr_auc, TOL)...
test-application-steps.py
Source:test-application-steps.py
...32 assert_that( counts ).contains_only( count )33 assert_that( incrmts ).contains_only( 1 )34 assert_that( incrids ).contains_only( 1 )35 36 assert_that( sum( sframes ) / len( sframes ) ).is_close_to( step, 2001 )37 assert_that( min( sframes ) ).is_close_to( step, 5001 )38 assert_that( max( sframes ) ).is_close_to( step, 5002 )39 40 assert_that( sum( rframes ) / len( rframes ) ).is_close_to( step, 2002 )41 #assert_that( min( rframes ) ).is_close_to( step, 10001 )42 #assert_that( max( rframes ) ).is_close_to( step, 10002 )43 44 meandrift = sum( drifts ) / len( drifts )45 assert_that( meandrift ).is_less_than( 100003 )46 assert_that( min( drifts ) ).is_close_to( meandrift, 20001 )47 assert_that( max( drifts ) ).is_close_to( meandrift, 20002 )...
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!