Best Python code snippet using Testify_python
test_env_context.py
Source: test_env_context.py
...136 # __enter__() test137 if (_test_enter):138 self.conduct_tests(139 func=func,140 tests=_construct_test(_test_enter.get("answer", None)),141 )142 # __exit__() test143 if (_test_exit):144 self.conduct_tests(145 func=func,146 tests=_construct_test(_test_exit.get("answer", None)),147 )148 def test_EnvironmentContext(self):149 _old_environment = dict(os.environ)150 _test_envs = {151 "SAMPLE_ENVVAR1":"Testing Temporary System Variable 1",152 "SAMPLE_ENVVAR2":"Testing Temporary System Variable 2",153 "SAMPLE_ENVVAR3":"Testing Temporary System Variable 3",154 }155 _tests_enter = [156 {157 # These are args for the context manager, not the tests158 "args":{159 # Just update the variables160 "update":_test_envs,...
dataset.py
Source: dataset.py
...32 df, self.num_users, self.num_items = self._load_data(file_path)33 self.pos_dict = self._construct_pos_dict(df)34 self.train_df, self.test_df = self._split_train_test(df)35 self.train_dict = self._construct_train(self.train_df)36 self.test_dict = self._construct_test(self.test_df)373839 def _load_data(self, file_path):40 df = pd.read_csv(file_path, sep=',', usecols=[0, 1])4142 # constructing index43 uiterator = count(0)44 udict = defaultdict(lambda: next(uiterator))45 [udict[user] for user in sorted(df['reviewerID'].tolist())]46 iiterator = count(0)47 idict = defaultdict(lambda: next(iiterator))48 [idict[item] for item in sorted(df['asin'].tolist())]4950 self.udict = udict51 self.idict = idict5253 df['uidx'] = df['reviewerID'].map(lambda x: udict[x])54 df['iidx'] = df['asin'].map(lambda x: idict[x])55 del df['reviewerID'], df['asin']56 print('Load %s data successfully with %d users, %d products and %d interactions.'57 %(self.name, len(udict), len(idict), df.shape[0]))5859 return df, len(udict), len(idict)606162 def _construct_pos_dict(self, df):63 # we can't build a negative dictionary cause it'll cost huge memory64 pos_dict = defaultdict(set)65 for user, item in zip(df['uidx'], df['iidx']):66 pos_dict[user].add(item)6768 return pos_dict697071 def _split_train_test(self, df):72 test_list = []73 print('Spliting data of train and test...')74 with Pool(self.args.processor_num) as pool:75 nargs = [(user, df, self.args.test_size) for user in range(self.num_users)]76 test_list = pool.map(self._split, nargs)7778 test_df = pd.concat(test_list)79 train_df = df.drop(test_df.index)8081 train_df = train_df.reset_index(drop=True)82 test_df = test_df.reset_index(drop=True)8384 train_df.to_csv(self.path+'/%s_train_df.csv'% self.name, index=False)85 test_df.to_csv(self.path+'/%s_test_df.csv'% self.name, index=False)8687 return train_df, test_df888990 def _construct_train(self, df):91 # It's desperate to use df to calculate... so slow!!!92 print('Adding negative data to train_df...')93 users = []94 items = []95 labels = []96 with Pool(self.args.processor_num) as pool:97 nargs = [(user, item, self.num_items, self.pos_dict, self.args.train_neg_num, True)98 for user, item in zip(df['uidx'], df['iidx'])]99 res_list = pool.map(self._add_negtive, nargs)100101 for (batch_users, batch_items, batch_labels) in res_list:102 users += batch_users103 items += batch_items104 labels += batch_labels105106 data_dict = {'user': users, 'item': items, 'label': labels}107 np.save(self.train_npy_path, data_dict)108109 return data_dict110111112 def _construct_test(self, df):113 print('Adding negative data to test_df...')114 users = []115 items = []116 labels = []117118 with Pool(self.args.processor_num) as pool:119 nargs = [(user, item, self.num_items, self.pos_dict, self.args.test_neg_num, False)120 for user, item in zip(df['uidx'], df['iidx'])]121 res_list = pool.map(self._add_negtive, nargs)122123 for batch_users, batch_items, batch_labels in res_list:124 users += batch_users125 items += batch_items126 labels += batch_labels
...
Check out the latest blogs from LambdaTest on this topic:
Software Risk Management (SRM) combines a set of tools, processes, and methods for managing risks in the software development lifecycle. In SRM, we want to make informed decisions about what can go wrong at various levels within a company (e.g., business, project, and software related).
In today’s data-driven world, the ability to access and analyze large amounts of data can give researchers, businesses & organizations a competitive edge. One of the most important & free sources of this data is the Internet, which can be accessed and mined through web scraping.
Agile has unquestionable benefits. The mainstream method has assisted numerous businesses in increasing organizational flexibility as a result, developing better, more intuitive software. Distributed development is also an important strategy for software companies. It gives access to global talent, the use of offshore outsourcing to reduce operating costs, and round-the-clock development.
Automating testing is a crucial step in the development pipeline of a software product. In an agile development environment, where there is continuous development, deployment, and maintenance of software products, automation testing ensures that the end software products delivered are error-free.
Before we discuss the Joomla testing, let us understand the fundamentals of Joomla and how this content management system allows you to create and maintain web-based applications or websites without having to write and implement complex coding requirements.
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!