Best Python code snippet using SeleniumBase
dlt_workflow_refactored_unit_tests.py
1# Databricks notebook source2# MAGIC %run ./dlt3# COMMAND ----------4# MAGIC %run ./dlt_workflow_refactored5# COMMAND ----------6from pyspark.sql import Row7import unittest8# COMMAND ----------9from pyspark.sql.functions import lit10import datetime11timestamp = datetime.datetime.fromisoformat("2000-01-01T00:00:00")12def timestamp_provider():13 return lit(timestamp)14# COMMAND ----------15from pyspark.sql.functions import when, col16from pyspark.sql import Row17class FunctionUnitTests(unittest.TestCase):18 @classmethod19 def setUpClass(cls):20 container.register(21 timestamp_provider=timestamp_provider22 )23 24 def test_add_ingest_columns(self):25 df = spark.range(1)26 df = df.transform(container.add_ingest_columns)27 result = df.collect()28 self.assertEqual(1, len(result), "Only one record expected")29 self.assertIn("ingest_timestamp", df.columns, "Ingest timestamp column not present")30 self.assertIn("ingest_source", df.columns, "Ingest source column not present")31 self.assertEqual(url.split("/")[-1], result[0].ingest_source, "Ingest source not correct")32 self.assertEqual(timestamp, result[0].ingest_timestamp, "Ingest timestamp not correct")33 34 def test_add_processed_timestamp(self):35 df = spark.range(1)36 df = df.transform(container.add_processed_timestamp)37 result = df.collect()38 self.assertEqual(1, len(result), "Only one record expected")39 self.assertIn("processed_timestamp", df.columns, "Processed timestamp column not present")40 self.assertEqual(timestamp, result[0].processed_timestamp, "Processed timestamp not correct")41 42 def test_add_null_index_array(self):43 df = spark.createDataFrame([44 Row(id=1, test_null=None),45 Row(id=2, test_null=1)46 ])47 df = df.transform(container.add_null_index_array)48 result = df.collect()49 self.assertEqual(2, len(result), "Two records are expected") 50 self.assertIn("nulls", df.columns, "Nulls column not present")51 self.assertIsNone(result[0].test_null, "First record should contain null")52 self.assertIsNotNone(result[1].test_null, "Second record should not contain null")53 self.assertIn(1, result[0].nulls, "Nulls array should include 1")54 self.assertIsNot(result[1].nulls, "Nulls array should be empty")55 56 def test_filter_null_index_empty(self):57 df = spark.createDataFrame([58 Row(id=1, test_null=None, nulls=[1]),59 Row(id=2, test_null=1, nulls=[])60 ])61 df = df.transform(container.filter_null_index_empty)62 result = df.collect()63 self.assertEqual(1, len(result), "One record is expected")64 self.assertNotIn("nulls", df.columns, "Nulls column not present")65 66 def test_filter_null_index_not_empty(self):67 df = spark.createDataFrame([68 Row(id=1, test_null=None, nulls=[1]),69 Row(id=2, test_null=1, nulls=[])70 ])71 df = df.transform(container.filter_null_index_not_empty)72 result = df.collect()73 self.assertEqual(1, len(result), "One record is expected")74 self.assertIn("nulls", df.columns, "Nulls column not present")75 76 def test_agg_count_by_country(self):77 df = spark.createDataFrame([78 Row(country="Country0"),79 Row(country="Country1"),80 Row(country="Country0")81 ])82 df = df.transform(container.agg_count_by_country)83 result = df.collect()84 self.assertEqual(2, len(result), "Two records expected")85 self.assertIn("country", df.columns, "Country column not present")86 self.assertIn("count", df.columns, "Count column not present")87 d = {r[0]: r[1] for r in result}88 self.assertEqual(2, d.get("Country0", -1), "Country0 count should be 2")...
test_plots.py
Source: test_plots.py
...7from data_tools import plots8class ChordplotTestCase(unittest.TestCase):9 @unittest.skip('** NOTE **: data_tools.plots.chordplot test unit is not'10 + ' implemented.')11 def test_null(self):12 pass13class ClusterHmapTestCase(unittest.TestCase):14 @unittest.skip('** NOTE **: data_tools.plots.cluster_hmap test unit is not'15 + ' implemented.')16 def test_null(self):17 pass18class DensityTestCase(unittest.TestCase):19 @unittest.skip('** NOTE **: data_tools.plots.density test unit is not'20 + ' implemented.')21 def test_null(self):22 pass23class PcaTestCase(unittest.TestCase):24 @unittest.skip('** NOTE **: data_tools.plots.pca test unit is not'25 + ' implemented.')26 def test_null(self):27 pass28class PhasePortraitTestCase(unittest.TestCase):29 @unittest.skip('** NOTE **: data_tools.plots.phase_portrait test unit is'30 + ' not implemented.')31 def test_null(self):32 pass33class PianoConsensusTestCase(unittest.TestCase):34 @unittest.skip('** NOTE **: data_tools.plots.piano_consensus test unit is'35 + ' not implemented.')36 def test_null(self):37 pass38class SimilarityHeatmapTestCase(unittest.TestCase):39 @unittest.skip('** NOTE **: data_tools.plots.similarity_heatmap test unit'40 + ' is not implemented.')41 def test_null(self):42 pass43class SimilarityHistogramTestCase(unittest.TestCase):44 @unittest.skip('** NOTE **: data_tools.plots.similarity_histogram test'45 + ' unit is not implemented.')46 def test_null(self):47 pass48class UpSetWrapTestCase(unittest.TestCase):49 @unittest.skip('** NOTE **: data_tools.plots.upset_wrap test unit is not'50 + ' implemented.')51 def test_null(self):52 pass53class VennTestCase(unittest.TestCase):54 @unittest.skip('** NOTE **: data_tools.plots.venn test unit is not'55 + ' implemented.')56 def test_null(self):57 pass58class VolcanoTestCase(unittest.TestCase):59 @unittest.skip('** NOTE **: data_tools.plots.volcano test unit is not'60 + ' implemented.')61 def test_null(self):...
Check out the latest blogs from LambdaTest on this topic:
If you pay close attention, you’ll notice that toggle switches are all around us because lots of things have two simple states: either ON or OFF (in binary 1 or 0).
There is just one area where each member of the software testing community has a distinct point of view! Metrics! This contentious issue sparks intense disputes, and most conversations finish with no definitive conclusion. It covers a wide range of topics: How can testing efforts be measured? What is the most effective technique to assess effectiveness? Which of the many components should be quantified? How can we measure the quality of our testing performance, among other things?
When it comes to UI components, there are two versatile methods that we can use to build it for your website: either we can use prebuilt components from a well-known library or framework, or we can develop our UI components from scratch.
Estimates are critical if you want to be successful with projects. If you begin with a bad estimating approach, the project will almost certainly fail. To produce a much more promising estimate, direct each estimation-process issue toward a repeatable standard process. A smart approach reduces the degree of uncertainty. When dealing with presales phases, having the most precise estimation findings can assist you to deal with the project plan. This also helps the process to function more successfully, especially when faced with tight schedules and the danger of deviation.
Building a website is all about keeping the user experience in mind. Ultimately, it’s about providing visitors with a mind-blowing experience so they’ll keep coming back. One way to ensure visitors have a great time on your site is to add some eye-catching text or image animations.
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!