Best Python code snippet using SeleniumBase
FonctionTP_sklearn.py
Source:FonctionTP_sklearn.py
1#Fonction utilisées dans la partie 2 tu TP 2 de Machine learning 2020/20212from matplotlib.pyplot import subplot3from matplotlib import cm4from sklearn import linear_model, datasets5from sklearn.metrics import mean_squared_error, r2_score6import numpy as np7from numpy.core.multiarray import result_type8import pylab as pl9import matplotlib.pyplot as mp10import math11## Inplementation de l'algoritme permettant de recuperer la régression à partir d'une liste de données (x_i,y_i)12def prediction(model, ensemble):13 """14 Renvoie un ensemble de valeurs prédites pour l'ensemble donné par le model donné.15 """16 result = model.predict(ensemble)17 return result18def erreurSkl(valeursReelles , valeursPredites):19 """20 Renvoie l'erreur mse du model étant donnés un ensemble de valeurs prédites et un ensemble de valeur réelles.21 """22 result = mean_squared_error(valeursReelles , valeursPredites)23 return result24# def planEnFonctionVecteurPonderation(sub_plot,W, zOrder = 0):25# """26# Desine le plan normal à W dans la sous figure sub_plot.27# """28# if W.shape[0] == 3:29# a,b,d = W[0], W[1], W[-1]30# x_ = np.linspace(-2,2,10)31# y_ = np.linspace(-2,2,10)32# X_,Y_ = np.meshgrid(x_,y_)33# Z_ = d + a*X_ + b*Y_34# sub_plot.plot_surface(X_, Y_, Z_, cmap=cm.plasma, zorder = zOrder)35# pass36# elif W.shape[0] == 2:37# a,b,d = W[0], W[-1]38# x_ = np.linspace(-1,1,10)39# y_ = np.linspace(-1,1,10)40# X_,Y_ = np.meshgrid(x_,y_)41# Z_ = a*X_ + b*Y_42# sub_plot.plot_surface(X_, Y_, Z_)43# else:44# print("Le vecteur de ponderation ne comporte pas le bon nombre de paramètrd")45# pass46# def rss(vecteurPonderation, X, Y):47# """48# Calcul la somme des moindres carrée (Residual sum of squares).49# ensemble de données X de valeurs Y50# """51# nombreDeValeurs = X.shape[0]52# resultat = 053# for indice in range(0,nombreDeValeurs):54# valeurPredite = vecteurPonderation[-1] #Biais55# valeurReelle = Y[indice]56# for coef in range(0,vecteurPonderation.shape[0]-1):57# valeurPredite += vecteurPonderation[coef]*X[indice][coef]58# resultat += (valeurPredite - valeurReelle)**259# return resultat60# def mse(vecteurPonderation, X, Y):61# """62# Calcul skl la moyenne des moindres carrée (mean-square error).63# ensemble de données X de valeurs Y64# """65# resultat = rss(vecteurPonderation, X, Y)/ X.shape[0]66# return resultat67# def rmse(vecteurPonderation, X, Y):68# resultat = math.sqrt(mse(vecteurPonderation, X, Y))69# return resultat70# def regLin(x,y):71# """72# Regression Linéaire sklearn.73# ensemble de données x de valeurs y74# """75# reg = linear_model.LinearRegression()76# reg.fit(x,y)77# result = np.concatenate([reg.coef_, [reg.intercept_]])78# return result79# def graphRegLin2d(x,y,a=-5,b=5, imprimer = False, afficherDroite = False, afficherNuageDePoints = False, afficherErreur = False, Tout = False):80# """81# Representation graphique de la régression linéaire avec biais.82# ensemble de données x de valeurs y83# a et b : abscisses min et max du segment représentant l'approximation affine.84# Les parametres booleens imprimer, afficherDroite, afficherErreur, afficherNuageDePoints permette de choisir ce que l'on affiche.85# """86# reg = regLin(x,y)87# if afficherNuageDePoints: pl.scatter(x[:, 0], y)88# if afficherDroite : pl.plot([a, b],[reg[1] + a*reg[0], reg[1] + b*reg[0]],'r--', lw=2)89# #if afficherErreur : print(mse(reg,x,y)) 90# if imprimer: pl.show()91# def graphRegLin3d(x,y,a=-5,b=5, imprimer = False, afficherDroite = False, afficherNuageDePoints = False, afficherErreur = False):92# """93# Representation graphique de la régression linéaire 3d avec biais.94# ensemble de données x de valeurs y95# Les parametres booleens imprimer, afficherDroite, afficherErreur, afficherNuageDePoints permette de choisir ce que l'on affiche.96# """97# fig = pl.figure()98# ax = fig.add_subplot(111, projection='3d')99# ax.set_xlabel('X Label')100# ax.set_ylabel('Y Label')101# ax.set_zlabel('Z Label')102# regressionLineaire = regLin(x,y)103# if afficherNuageDePoints: ax.scatter(x[:,0], x[:,1], y, s=50 )104# if afficherDroite :planEnFonctionVecteurPonderation(ax, regressionLineaire, zOrder = 2)105# #if afficherErreur : print(mse(regressionLineaire,x,y)) 106# if imprimer: pl.show()107# def graphRegLin(x,y, a=-5,b=-5,imprimer = False, afficherDroite = False, afficherNuageDePoints = False, afficherErreur = False, Tout = False):108# if Tout: imprimer, afficherDroite, afficherErreur, afficherNuageDePoints = True, True, True, True109# if x.shape[1] == 1:graphRegLin2d(x,y,a=a,b=b, imprimer = imprimer, afficherDroite = afficherDroite, afficherNuageDePoints = afficherNuageDePoints, afficherErreur = afficherErreur)110# if x.shape[1] == 2:graphRegLin3d(x,y, imprimer = imprimer, afficherDroite = afficherDroite, afficherNuageDePoints = afficherNuageDePoints, afficherErreur = afficherNuageDePoints)111# def regressionLineaireSkLearn():...
FonctionTP2.py
Source:FonctionTP2.py
1#Algorithme Régression linéaire par moindres carrés2from matplotlib.pyplot import subplot3from matplotlib import cm4from sklearn import linear_model5import numpy as np6from numpy.core.multiarray import result_type7import pylab as pl8import matplotlib.pyplot as mp9import math10## Inplementation de l'algoritme permettant de recuperer la régression à partir d'une liste de données (x_i,y_i)11def planEnFonctionVecteurPonderation(sub_plot,W, zOrder = 0):12 """13 Desine le plan normal à W dans la sous figure sub_plot.14 """15 if W.shape[0] == 3:16 a,b,d = W[0], W[1], W[-1]17 x_ = np.linspace(-2,2,10)18 y_ = np.linspace(-2,2,10)19 X_,Y_ = np.meshgrid(x_,y_)20 Z_ = d + a*X_ + b*Y_21 sub_plot.plot_surface(X_, Y_, Z_, cmap=cm.plasma, zorder = zOrder)22 pass23 elif W.shape[0] == 2:24 a,b,d = W[0], W[-1]25 x_ = np.linspace(-1,1,10)26 y_ = np.linspace(-1,1,10)27 X_,Y_ = np.meshgrid(x_,y_)28 Z_ = a*X_ + b*Y_29 sub_plot.plot_surface(X_, Y_, Z_)30 else:31 print("Le vecteur de ponderation ne comporte pas le bon nombre de paramètrd")32 pass33def rss(vecteurPonderation, X, Y):34 """35 Calcul la somme des moindres carrée (Residual sum of squares).36 ensemble de données X de valeurs Y37 """38 nombreDeValeurs = X.shape[0]39 resultat = 040 for indice in range(0,nombreDeValeurs):41 valeurPredite = vecteurPonderation[-1] #Biais42 valeurReelle = Y[indice]43 for coef in range(0,vecteurPonderation.shape[0]-1):44 valeurPredite += vecteurPonderation[coef]*X[indice][coef]45 resultat += (valeurPredite - valeurReelle)**246 return resultat47def mse(vecteurPonderation, X, Y):48 """49 Calcul la moyenne des moindres carrée (mean-square error).50 ensemble de données X de valeurs Y51 """52 resultat = rss(vecteurPonderation, X, Y)/ X.shape[0]53 return resultat54def rmse(vecteurPonderation, X, Y):55 resultat = math.sqrt(mse(vecteurPonderation, X, Y))56 return resultat57def regLin(x,y):58 """59 Regression Linéaire avec biais.60 ensemble de données x de valeurs y61 """62 x = np.c_[x,np.ones(x.shape[0])]63 xt = np.transpose(x)64 xtx = np.dot(xt,x)65 inv = np.linalg.inv(xtx)66 xty = np.dot(xt,y)67 return np.dot(inv,xty)68def graphRegLin2d(x,y,a=-5,b=5, imprimer = False, afficherDroite = False, afficherNuageDePoints = False, afficherErreur = False, Tout = False):69 """70 Representation graphique de la régression linéaire avec biais.71 ensemble de données x de valeurs y72 a et b : abscisses min et max du segment représentant l'approximation affine.73 Les parametres booleens imprimer, afficherDroite, afficherErreur, afficherNuageDePoints permette de choisir ce que l'on affiche.74 """75 reg = regLin(x,y)76 if afficherNuageDePoints: pl.scatter(x[:, 0], y)77 if afficherDroite : pl.plot([a, b],[reg[1] + a*reg[0], reg[1] + b*reg[0]],'r--', lw=2)78 if afficherErreur : print(mse(reg,x,y)) 79 if imprimer: pl.show()80def graphRegLin3d(x,y,a=-5,b=5, imprimer = False, afficherDroite = False, afficherNuageDePoints = False, afficherErreur = False):81 """82 Representation graphique de la régression linéaire 3d avec biais.83 ensemble de données x de valeurs y84 Les parametres booleens imprimer, afficherDroite, afficherErreur, afficherNuageDePoints permette de choisir ce que l'on affiche.85 """86 fig = pl.figure()87 ax = fig.add_subplot(111, projection='3d')88 ax.set_xlabel('X Label')89 ax.set_ylabel('Y Label')90 ax.set_zlabel('Z Label')91 regressionLineaire = regLin(x,y)92 if afficherNuageDePoints: ax.scatter(x[:,0], x[:,1], y, s=50 )93 if afficherDroite :planEnFonctionVecteurPonderation(ax, regressionLineaire, zOrder = 2)94 if afficherErreur : print(mse(regressionLineaire,x,y)) 95 if imprimer: pl.show()96def graphRegLin(x,y, a=-5,b=-5,imprimer = False, afficherDroite = False, afficherNuageDePoints = False, afficherErreur = False, Tout = False):97 if Tout: imprimer, afficherDroite, afficherErreur, afficherNuageDePoints = True, True, True, True98 if x.shape[1] == 1:graphRegLin2d(x,y,a=a,b=b, imprimer = imprimer, afficherDroite = afficherDroite, afficherNuageDePoints = afficherNuageDePoints, afficherErreur = afficherErreur)...
sect.py
Source:sect.py
1from swatpyplus.sect import Section2from .comp import Composantes3from .compte_obj import CompteObjet4from .impr import Imprimer5from .impr_obj import ImprimerObjet6from .temps import Temps7class Simul(Section):8 nom = 'simulation'...
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!