Best Ginkgo code snippet using types.Blur
commands.go
Source: commands.go
1package main2import (3 "encoding/json"4 "fmt"5 "io/ioutil"6 "strings"7 "imgfe/src/decryptor"8 "imgfe/src/encryptor"9 "imgfe/src/kernel"10 "imgfe/src/tensor"11)12func run_enc_command(image_file string, cipher_file string, key_file string, key_length int, kernel_types string, kernel_offset int, verbose int) {13 // process kernel14 kernel_types_array := strings.Split(kernel_types, ",")15 var kernel_size int16 switch kernel_types_array[0] {17 case "identity", "gaussian_blur", "box_blur":18 kernel_size = 2*kernel_offset + 119 case "downsize_partial", "downsize_full":20 kernel_size = kernel_offset + 121 default:22 panic("unrecognized kernel: " + kernel_types_array[0])23 }24 // read the original image to tensor25 ot, err := encryptor.NewOriginalTensor(image_file)26 if err != nil {27 panic(err.Error())28 }29 if verbose >= 2 {30 err = PrintOriginalImage(image_file, *ot)31 if err != nil {32 panic(err.Error())33 }34 }35 // construct the encryption scheme36 es, err := encryptor.NewEncryptSchemePrecomp(kernel_size*kernel_size, key_length)37 if err != nil {38 panic(err.Error())39 }40 // derive function keys for kernels and write to files41 for _, kernel_type := range kernel_types_array {42 var mask []uint3243 var divisor uint3244 switch kernel_type {45 case "identity":46 mask, divisor, err = kernel.Identity(kernel_size)47 if err != nil {48 panic(err.Error())49 }50 es.DeriveFunctionKey(mask)51 err = WriteLastCredential(es, key_file, kernel_size, kernel_type, key_length, verbose)52 case "gaussian_blur":53 mask, divisor, err = kernel.Gaussian_blur(kernel_size)54 if err != nil {55 panic(err.Error())56 }57 es.DeriveFunctionKey(mask)58 err = WriteLastCredential(es, key_file, kernel_size, kernel_type, key_length, verbose)59 case "box_blur":60 mask, divisor, err = kernel.Box_blur(kernel_size)61 if err != nil {62 panic(err.Error())63 }64 es.DeriveFunctionKey(mask)65 err = WriteLastCredential(es, key_file, kernel_size, kernel_type, key_length, verbose)66 case "downsize_partial":67 mask, divisor, err = kernel.Downsize_partial(kernel_size, 2)68 if err != nil {69 panic(err.Error())70 }71 es.DeriveFunctionKey(mask)72 err = WriteLastCredential(es, key_file, kernel_size, kernel_type, key_length, verbose)73 case "downsize_full":74 for kernel_idx := 0; kernel_idx <= kernel_size*kernel_size-1; kernel_idx++ {75 mask, divisor, err = kernel.Downsize_partial(kernel_size, kernel_idx)76 if err != nil {77 panic(err.Error())78 }79 es.DeriveFunctionKey(mask)80 }81 fmt.Println(es.GetYMasksString())82 err = WriteLastCredentials(es, key_file, kernel_size, kernel_type, key_length, verbose, kernel_size*kernel_size)83 }84 if err != nil {85 panic(err.Error())86 }87 if verbose >= 2 {88 fmt.Println("***Mask and divisor of kernel: " + kernel_type)89 fmt.Println(mask)90 fmt.Println(divisor)91 }92 }93 func_keys := es.GetFunctionKeysString()94 if verbose >= 1 {95 fmt.Println("***Function keys:")96 fmt.Println(func_keys)97 }98 // construct the encrypted tensor99 et := encryptor.NewEncryptTensor(ot.Tensor.W, ot.Tensor.H)100 var pt tensor.Tensor101 switch kernel_types_array[0] {102 case "identity", "gaussian_blur", "box_blur":103 pt = ot.PaddingCenter(kernel_offset, 0)104 if verbose >= 2 {105 err = PrintPaddingImage(image_file, pt)106 if err != nil {107 panic(err.Error())108 }109 }110 case "downsize_partial", "downsize_full":111 pt = ot.CroppingTopLeft(kernel_size, 0)112 if verbose >= 2 {113 err = PrintCroppingImage(image_file, pt)114 if err != nil {115 panic(err.Error())116 }117 }118 }119 if verbose >= 1 {120 fmt.Println("***Encryption started.")121 }122 switch kernel_types_array[0] {123 case "identity", "gaussian_blur", "box_blur":124 et, err = es.EncryptCenter(kernel_offset, pt)125 case "downsize_partial", "downsize_full":126 et, err = es.EncryptTopLeft(kernel_size, pt)127 }128 if err != nil {129 panic(err.Error())130 }131 if verbose >= 1 {132 fmt.Println("***Encryption finished.")133 }134 // write encrypted tensor to file135 err = WriteCipher(et, cipher_file, verbose)136 if err != nil {137 panic(err.Error())138 }139}140func run_dec_command(image_file string, cipher_file string, key_file string, verbose int) {141 //read credentials and construct the decrypted scheme142 if verbose >= 1 {143 fmt.Println("***Read credentials from file: " + key_file)144 }145 credentials_byte_read, err := ioutil.ReadFile(key_file)146 if err != nil {147 panic(err.Error())148 }149 var ec encryptor.EncryptCredentials150 err = json.Unmarshal(credentials_byte_read, &ec)151 if err != nil {152 panic(err.Error())153 }154 es, err := encryptor.NewEncryptSchemePrecomp(ec.Kernel_size*ec.Kernel_size, ec.Key_length)155 if err != nil {156 panic(err.Error())157 }158 params, _, _ := es.Get_Params_Y_FK()159 ds, err := decryptor.NewDecryptSchemePrecomp(params, decryptor.GetYMasksFromString(ec.Y_mask), decryptor.GetFunctionKeysFromString(ec.Func_key), verbose)160 if err != nil {161 panic(err.Error())162 }163 //read cipher and launch decryption164 if verbose >= 1 {165 fmt.Println("***Read cipher from file: " + cipher_file)166 }167 tensor_byte_read, err := ioutil.ReadFile(cipher_file)168 if err != nil {169 panic(err.Error())170 }171 var ets encryptor.EncryptTensorString172 err = json.Unmarshal(tensor_byte_read, &ets)173 if err != nil {174 panic(err.Error())175 }176 if verbose >= 1 {177 fmt.Println("***Decryption started.")178 }179 var t tensor.Tensor180 switch ec.Kernel_type {181 case "identity", "gaussian_blur", "box_blur":182 t, err = ds.DecryptSingle(decryptor.GetEncryptTensorFromString(ets), 0)183 case "downsize_partial":184 t, err = ds.DecryptSingle(decryptor.GetEncryptTensorFromString(ets), 0)185 case "downsize_full":186 t, err = ds.DecryptMultiple(decryptor.GetEncryptTensorFromString(ets), ec, verbose)187 }188 if err != nil {189 panic(err.Error())190 }191 if verbose >= 1 {192 fmt.Println("***Decryption finished.")193 }194 // tensor to output image195 if verbose >= 1 {196 fmt.Println("***Write image to file: " + image_file)197 }198 PrintImage(image_file, t)199}...
resize.go
Source: resize.go
...31// Minify is a convenience method that scales an image proportionally to half its size.32func (im *Image) Minify() (*Image, error) {33 return im.applyFunc("minifying", C.ImageFunc(C.MinifyImage))34}35// ResizeBlur returns a new image resized to the given dimensions using the provided36// filter and blur factor (where > 1 is blurry, < 1 is sharp). If width or height is37// < 0, it's calculated proportionally to the other dimension. If both of them are < 0,38// an error is returned.39func (im *Image) ResizeBlur(width, height int, filter Filter, blur float64) (*Image, error) {40 var data C.ResizeData41 if width < 0 {42 if height < 0 {43 return nil, fmt.Errorf("invalid resize %dx%d", width, height)44 }45 h := float64(im.Height())46 var ratio float6447 if h != 0 {48 ratio = float64(im.Width()) / h49 }50 width = int(float64(height) * ratio)51 }52 if height < 0 {53 if width < 0 {54 return nil, fmt.Errorf("invalid resize %dx%d", width, height)55 }56 var ratio float6457 w := float64(im.Width())58 if w != 0 {59 ratio = float64(im.Height()) / w60 }61 height = int(float64(width) * ratio)62 }63 data.columns = C.ulong(width)64 data.rows = C.ulong(height)65 data.filter = C.FilterTypes(filter)66 data.blur = C.double(blur)67 return im.applyDataFunc("resizing", C.ImageDataFunc(C.resizeImage), &data)68}69// Resize works like ResizeBlur, but sets the blur to 170func (im *Image) Resize(width, height int, filter Filter) (*Image, error) {71 return im.ResizeBlur(width, height, filter, 1)72}73func (im *Image) sizeFunc(what string, width, height int, f C.ImageDataFunc) (*Image, error) {74 var s C.SizeData75 s.columns = C.ulong(width)76 s.rows = C.ulong(height)77 return im.applyDataFunc(what, f, &s)78}79// Sample scales an image to the desired dimensions with pixel sampling.80// Unlike other scaling methods, this method does not introduce any81// additional color into the scaled image.82func (im *Image) Sample(width, height int) (*Image, error) {83 return im.sizeFunc("sampling", width, height, C.ImageDataFunc(C.sampleImage))84}85// Scale changes the size of an image to the given dimensions....
blur.go
Source: blur.go
...5 "strings"6 "github.com/songjiayang/imagecloud/internal/image/metadata"7 "github.com/songjiayang/imagecloud/internal/image/processor/types"8)9type Blur string10func (*Blur) Process(args *types.CmdArgs) (info *metadata.Info, err error) {11 var (12 s int13 )14 for _, param := range args.Params {15 splits := strings.Split(param, "_")16 if len(splits) != 2 {17 return nil, errors.New("invalid blur params")18 }19 switch splits[0] {20 case "s":21 s, err = strconv.Atoi(splits[1])22 }23 if err != nil {24 return25 }26 }27 if s < 1 || s > 50 {28 return nil, errors.New("invalid blur value")29 }30 return nil, args.Img.GaussianBlur(float64(s))31}...
Blur
Using AI Code Generation
1import (2func main() {3 f, _ := os.Open("test.png")4 defer f.Close()5 img, _ := png.Decode(f)6 bounds := img.Bounds()7 gray := image.NewGray(bounds)8 for y := bounds.Min.Y; y < bounds.Max.Y; y++ {9 for x := bounds.Min.X; x < bounds.Max.X; x++ {10 gray.Set(x, y, color.GrayModel.Convert(img.At(x, y)))11 }12 }13 f, _ = os.Create("grayscale.png")14 defer f.Close()15 png.Encode(f, gray)16 blur := blur(gray)17 f, _ = os.Create("blur.png")18 defer f.Close()19 png.Encode(f, blur)20}21func blur(img *image.Gray) *image.Gray {22 bounds := img.Bounds()23 blur := image.NewGray(bounds)24 for y := bounds.Min.Y; y < bounds.Max.Y; y++ {25 for x := bounds.Min.X; x < bounds.Max.X; x++ {26 blur.Set(x, y, blurredPixel(img, x, y))27 }28 }29}30func blurredPixel(img *image.Gray, x, y int) color.Color {31 bounds := img.Bounds()32 if minX < bounds.Min.X {33 }34 if minY < bounds.Min.Y {35 }36 if maxX > bounds.Max.X {37 }
Blur
Using AI Code Generation
1import (2func main() {3 src, err := imaging.Open("test.jpg")4 if err != nil {5 panic(err)6 }7 dst := imaging.Blur(src, 2)8 err = imaging.Save(dst, "out.jpg")9 if err != nil {10 panic(err)11 }12}
Blur
Using AI Code Generation
1func main() {2 img := image.NewRGBA(image.Rect(0, 0, 100, 100))3 bgColor := color.RGBA{255, 255, 255, 255}4 blur := filter.NewBlur(5)5 blur.Apply(img, bgColor)6}
Blur
Using AI Code Generation
1import "github.com/GeertJohan/go.rice"2import "image"3import "image/draw"4import "image/jpeg"5import "image/png"6import "os"7func main() {8 file, err := os.Open("test.jpg")9 if err != nil {10 panic(err)11 }12 defer file.Close()13 img, _, err := image.Decode(file)14 if err != nil {15 panic(err)16 }17 rgba := image.NewRGBA(img.Bounds())18 draw.Draw(rgba, rgba.Bounds(), img, image.ZP, draw.Src)19 types.Blur(rgba, 10)20 out, err := os.Create("out.jpg")21 if err != nil {22 panic(err)23 }24 defer out.Close()25 jpeg.Encode(out, rgba, nil)26}27import "github.com/GeertJohan/go.rice"28import "image"29import "image/draw"30import "image/jpeg"31import "image/png"32import "os"33func main() {34 file, err := os.Open("test.png")35 if err != nil {36 panic(err)37 }38 defer file.Close()39 img, _, err := image.Decode(file)40 if err != nil {41 panic(err)42 }43 rgba := image.NewRGBA(img.Bounds())44 draw.Draw(rgba, rgba.Bounds(), img, image.ZP, draw.Src)45 types.Blur(rgba, 10)46 out, err := os.Create("out.png")47 if err != nil {48 panic(err)49 }50 defer out.Close()51 png.Encode(out, rgba)52}53import "github.com/GeertJohan/go.rice"54import "image"55import "image/draw"56import "image/jpeg"57import "image/png"58import "os"59func main() {60 file, err := os.Open("test.jpg
Blur
Using AI Code Generation
1import (2func main() {3 fmt.Println("Hello, playground")4 types.Blur()5}6import (7func main() {8 fmt.Println("Hello, playground")9 types.Blur()10}11import (12func main() {13 fmt.Println("Hello, playground")14 types.Blur()15}16import (17func main() {18 fmt.Println("Hello, playground")19 types.Blur()20}21import (22func main() {23 fmt.Println("Hello, playground")24 types.Blur()25}26import (27func main() {28 fmt.Println("Hello, playground")29 types.Blur()30}31import (32func main() {33 fmt.Println("Hello, playground")34 types.Blur()35}36import (37func main() {38 fmt.Println("Hello, playground")39 types.Blur()40}41import (42func main() {43 fmt.Println("Hello, playground")44 types.Blur()45}46import (47func main()
Blur
Using AI Code Generation
1import (2func main() {3 fmt.Println("Hello, GoPackage")4 obj.Blur()5}6import (7func main() {8 fmt.Println("Hello, GoPackage")9 obj.Blur()10}11import (12func main() {13 fmt.Println("Hello, GoPackage")14 obj.Blur()15}16import (17func main() {18 fmt.Println("Hello, GoPackage")19 obj.Blur()20}21import (22func main() {23 fmt.Println("Hello, GoPackage")24 obj.Blur()25}26import (27func main() {28 fmt.Println("Hello, GoPackage")29 obj.Blur()30}31import (32func main() {33 fmt.Println("Hello, GoPackage")34 obj.Blur()35}
Check out the latest blogs from LambdaTest on this topic:
Estimates are critical if you want to be successful with projects. If you begin with a bad estimating approach, the project will almost certainly fail. To produce a much more promising estimate, direct each estimation-process issue toward a repeatable standard process. A smart approach reduces the degree of uncertainty. When dealing with presales phases, having the most precise estimation findings can assist you to deal with the project plan. This also helps the process to function more successfully, especially when faced with tight schedules and the danger of deviation.
The web paradigm has changed considerably over the last few years. Web 2.0, a term coined way back in 1999, was one of the pivotal moments in the history of the Internet. UGC (User Generated Content), ease of use, and interoperability for the end-users were the key pillars of Web 2.0. Consumers who were only consuming content up till now started creating different forms of content (e.g., text, audio, video, etc.).
Technical debt was originally defined as code restructuring, but in today’s fast-paced software delivery environment, it has evolved. Technical debt may be anything that the software development team puts off for later, such as ineffective code, unfixed defects, lacking unit tests, excessive manual tests, or missing automated tests. And, like financial debt, it is challenging to pay back.
Coaching is a term that is now being mentioned a lot more in the leadership space. Having grown successful teams I thought that I was well acquainted with this subject.
Collecting and examining data from multiple sources can be a tedious process. The digital world is constantly evolving. To stay competitive in this fast-paced environment, businesses must frequently test their products and services. While it’s easy to collect raw data from multiple sources, it’s far more complex to interpret it properly.
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!