Best Syzkaller code snippet using stats.RemoveOutliers
main.go
Source:main.go
1package main2import (3 "encoding/json"4 "flag"5 "fmt"6 "io/ioutil"7 "log"8 "math"9 "net"10 "net/http"11 "strconv"12 "strings"13 "time"14 "github.com/adrg/strutil"15 "github.com/adrg/strutil/metrics"16 "github.com/gocolly/colly/v2"17 "github.com/montanaflynn/stats"18)19// this application can work as one of the agents' actuators20// based on the current intention, an agent can retrieve information about some topic21// sensors - beliefs (topic) - retrieve info from the web - sensor -> neural network - learn and improve an existent plan22// learn and improve an agent strategy, for instance23type Item struct {24 Title string25 Description string26 Price float6427 User string28 // UserRating string29 Amount int30 New bool31}32const threshold float64 = 1.033func main() {34 c := colly.NewCollector(35 colly.UserAgent("Mozilla/5.0"),36 )37 itens := []Item{}38 c.WithTransport(&http.Transport{39 Proxy: http.ProxyFromEnvironment,40 DialContext: (&net.Dialer{41 Timeout: 30 * time.Second,42 KeepAlive: 30 * time.Second,43 DualStack: true,44 }).DialContext,45 MaxIdleConns: 100,46 IdleConnTimeout: 90 * time.Second,47 TLSHandshakeTimeout: 10 * time.Second,48 ExpectContinueTimeout: 1 * time.Second,49 })50 detailCollector := c.Clone()51 // this function main goal is to iterate over52 // the returned list and enter in the links53 // to retrieved the desired information54 c.OnHTML(`a.ui-search-item__group__element.ui-search-link`, func(e *colly.HTMLElement) {55 log.Println("Starting Scraper")56 productLink := e.Attr("href")57 log.Println("Visiting item: ", productLink)58 detailCollector.Visit(productLink)59 })60 detailCollector.OnHTML("div.ui-pdp-container__row.ui-pdp-component-list.pr-16.pl-16", func(e *colly.HTMLElement) {61 log.Println("Extracting product details")62 title := e.ChildText(".ui-pdp-title")63 price := e.ChildText(".price-tag-fraction")64 user := e.ChildText(".ui-pdp-color--BLUE")65 //amount := e.ChildText(".ui-pdp-color--BLACK.ui-pdp-size--XSMALL.ui-pdp-family--REGULAR.ui-pdp-seller__header__subtitle")66 amount := e.ChildText(".ui-pdp-buybox__quantity__available")67 amount = strings.ReplaceAll(amount, "(", "")68 //ui-pdp-buybox__quantity__available69 new := e.ChildText(".ui-pdp-subtitle")70 item := Item{}71 item.Title = title72 priceF, _ := strconv.ParseFloat(price, 32)73 item.Price = float64(priceF) / float64(100)74 item.User = user75 item.Amount, _ = strconv.Atoi(strings.Split(amount, " ")[0])76 itens = append(itens, item)77 item.New = strings.Contains(new, "Novo")78 log.Println(item)79 })80 detailCollector.OnHTML("h1.ui-pdp-title", func(e *colly.HTMLElement) {81 // el := e.Request.Visit(e.Attr("ol"))82 // log.Println(el)83 log.Println("Visiting product", e)84 product := Item{}85 product.Title = e.Text //ui-pdp-title86 })87 c.OnRequest(func(r *colly.Request) {88 fmt.Println("Visiting", r.URL)89 })90 term := flag.String("term", "item", "term to be used during web-scraping")91 flag.Parse()92 fmt.Println(*term)93 site := "https://lista.mercadolivre.com.br/"94 displayMode := "_DisplayType_LF"95 err := c.Visit(site + *(term) + displayMode)96 if err != nil {97 fmt.Println(err)98 }99 results, _ := json.MarshalIndent(itens, "", " ")100 _ = ioutil.WriteFile("results.json", results, 0644)101 data, err := ioutil.ReadFile("results.json")102 if err != nil {103 log.Println(err)104 }105 json.Unmarshal(data, &itens)106 finalData := removeOutliers(&itens)107 perceptions, _ := json.MarshalIndent(finalData, "", " ")108 _ = ioutil.WriteFile("perceptions.json", perceptions, 0644)109}110func findSimilarities(items []Item) {111 for i := 0; i < len(items)/2; i++ {112 for j := 1; j < len(items)/2; j++ {113 similarity := strutil.Similarity(items[i].Title, items[j].Title, metrics.NewHamming())114 log.Println("Similarity ", items[i].Title, items[j].Title, similarity)115 }116 }117}118func extractPrices(items *[]Item) []float64 {119 data := []float64{}120 for _, v := range *items {121 data = append(data, v.Price)122 }123 return data124}125func findQuartile(items *[]Item) (stats.Outliers, error) {126 prices := extractPrices(items)127 q, err := stats.QuartileOutliers(prices)128 if err != nil {129 return stats.Outliers{}, err130 }131 return q, nil132}133func removeOutliers(items *[]Item) []Item {134 data := []float64{}135 for _, v := range *items {136 data = append(data, v.Price)137 }138 std, _ := stats.StandardDeviation(data)139 mean, _ := stats.Mean(data)140 log.Println(std)141 q, _ := stats.Quartile(data)142 log.Println(q)143 cleanedData := []Item{}144 for _, v := range *items {145 if math.Abs(v.Price) > math.Abs(mean-threshold*std) && math.Abs(v.Price) < math.Abs(mean+threshold*std) {146 cleanedData = append(cleanedData, v)147 }148 }149 log.Println(len(cleanedData))150 for _, v := range cleanedData {151 log.Println(v.Price)152 }153 return cleanedData154}...
sample.go
Source:sample.go
1package main2import (3 "fmt"4 "io"5 "regexp"6 "sort"7 "bandr.me/p/gbenchdiff/internal/stats"8)9const alpha = 0.0510type Metric struct {11 Name string12 TimeUnit string13 RealTime Sample14 CPUTime Sample15}16type Sample struct {17 Values []float6418 RValues []float64 // without outliers19 Min float6420 Mean float6421 Max float6422}23func (s *Sample) removeOutliers() {24 q1 := Percentile(s.Values, 0.25)25 q3 := Percentile(s.Values, 0.75)26 lo := q1 - 1.5*(q3-q1)27 hi := q3 + 1.5*(q3-q1)28 for _, value := range s.Values {29 if value >= lo && value <= hi {30 s.RValues = append(s.RValues, value)31 }32 }33}34func (s *Sample) ComputeStats() {35 s.removeOutliers()36 s.Min, s.Max = Bounds(s.RValues)37 s.Mean = Mean(s.RValues)38}39func (o Sample) Print(w io.Writer, n Sample, tu string) {40 u, err := stats.MannWhitneyUTest(o.RValues, n.RValues, stats.LocationDiffers)41 pval := u.P42 delta := "~"43 note := ""44 if err == stats.ErrZeroVariance {45 note = "(zero variance)"46 } else if err == stats.ErrSampleSize {47 note = "(too few samples)"48 } else if err == stats.ErrSamplesEqual {49 note = "(all equal)"50 } else if err != nil {51 note = fmt.Sprintf("(%s)", err)52 } else if pval < alpha {53 if n.Mean == o.Mean {54 delta = "0.00%"55 } else {56 pct := ((n.Mean - o.Mean) / o.Mean) * 100.057 delta = fmt.Sprintf("%+.2f%%", pct)58 }59 }60 if note == "" && pval != -1 {61 note = fmt.Sprintf("(p=%0.2f n=%d+%d)", pval, len(o.RValues), len(n.RValues))62 }63 fmt.Fprintf(w, "\t%s\t%s", delta, note)64 fmt.Fprintf(w, "\t%.2f%s\t%.2f%s", o.Mean, tu, n.Mean, tu)65}66func findMetric(m []Metric, name string) int {67 for i := range m {68 if m[i].Name == name {69 return i70 }71 }72 return -173}74func GetMetrics(benchmarks []Benchmark, filterRe *regexp.Regexp) []Metric {75 var metrics []Metric76 for _, b := range benchmarks {77 if filterRe != nil && !filterRe.MatchString(b.Name) {78 continue79 }80 if b.RunType != "iteration" {81 continue82 }83 i := findMetric(metrics, b.Name)84 if i == -1 {85 metrics = append(metrics, Metric{86 Name: b.Name,87 TimeUnit: b.TimeUnit,88 })89 i = len(metrics) - 190 }91 metrics[i].RealTime.Values = append(metrics[i].RealTime.Values, b.RealTime)92 metrics[i].CPUTime.Values = append(metrics[i].CPUTime.Values, b.CPUTime)93 }94 for i := range metrics {95 r := metrics[i].RealTime.Values96 sort.Float64s(r)97 metrics[i].RealTime.Values = r98 metrics[i].RealTime.ComputeStats()99 c := metrics[i].CPUTime.Values100 sort.Float64s(c)101 metrics[i].CPUTime.Values = c102 metrics[i].CPUTime.ComputeStats()103 }104 return metrics105}...
CoreFunctionality.go
Source:CoreFunctionality.go
...10 var musicForLightModeVal, lightForTempModeVal float6411 thisCondVals = GetDataCurCond(currCond)12 stats := Stats()13 support := SupportFuncs()14 tempArr:=stats.RemoveOutliers(support.GetWeightedFieldArray(thisCondVals, "TempIn"))15 lightArr := stats.RemoveOutliers(support.GetWeightedFieldArray(thisCondVals, "LightIn"))16 musicArr := stats.RemoveOutliers(support.GetWeightedFieldArray(thisCondVals, "MusicIn"))17 tempMode, _ := stats.GetMode(tempArr)18 lightModeOA, lightModeCnt := stats.GetMode(lightArr)19 musicModeOA, musicModeCnt := stats.GetMode(musicArr)20 controlledValues := thisCondVals.CtrledVals21 for _,j := range controlledValues{22 if(j.TempIn == tempMode[0]){23 lightForTemp = append(lightForTemp,j.LightIn )//* float64(j.HomesCount))24 }25 }26 if(len(lightForTemp)!=0) {27 lightForTempMode, tempLightModeCnt1 := stats.GetMode(lightForTemp)28 lightForTempModeVal = lightForTempMode[0]29 tempLightModeCnt = tempLightModeCnt130 }...
RemoveOutliers
Using AI Code Generation
1import "fmt"2import "stats"3func main() {4 data := []float64{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}5 fmt.Println("Original data:", data)6 data = stats.RemoveOutliers(data, 1.5)7 fmt.Println("Modified data:", data)8}
RemoveOutliers
Using AI Code Generation
1import (2func main() {3 rand.Seed(time.Now().UnixNano())4 for i := 0; i < 10; i++ {5 x = append(x, rand.Float64()*100)6 }7 fmt.Println("Before removing outliers", x)8 x = stats.RemoveOutliers(x)9 fmt.Println("After removing outliers", x)10}11func RemoveOutliers(x []float64) []float64 {12 mean := Mean(x)13 sd := StdDev(x)14 for _, v := range x {15 if v > mean-3*sd && v < mean+3*sd {16 r = append(r, v)17 }18 }19}20func Mean(x []float64) float64 {21 for _, v := range x {22 }23 return sum / float64(len(x))24}
RemoveOutliers
Using AI Code Generation
1import (2func main() {3 floatSlice := []float64{1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0}4 cleanSlice, _ := stats.RemoveOutliers(floatSlice, nil)5 fmt.Println(cleanSlice)6}7import (8func main() {9 floatSlice := []float64{1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0}10 outlierMode := stats.OutlierMode{11 }12 cleanSlice, _ := stats.RemoveOutliers(floatSlice, outlierMode)13 fmt.Println(cleanSlice)14}15import (16func main() {17 intSlice := []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
RemoveOutliers
Using AI Code Generation
1import (2func main() {3 mySlice := []float64{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}4 newSlice, _ := stats.RemoveOutliers(mySlice, 2, 1.0)5 fmt.Println("New Slice:", newSlice)6}
RemoveOutliers
Using AI Code Generation
1import (2func main() {3 var arr = []int{}4 rand.Seed(time.Now().UnixNano())5 for i := 0; i < 10; i++ {6 arr = append(arr, rand.Intn(100))7 }8 fmt.Println(arr)9 fmt.Println(RemoveOutliers(arr))10}11import (12func main() {13 var arr = []int{}14 rand.Seed(time.Now().UnixNano())15 for i := 0; i < 10; i++ {16 arr = append(arr, rand.Intn(100))17 }18 fmt.Println(arr)19 fmt.Println(RemoveOutliers(arr))20}21import (22func main() {23 var arr = []int{}24 rand.Seed(time.Now().UnixNano())25 for i := 0; i < 10; i++ {26 arr = append(arr, rand.Intn(100))27 }28 fmt.Println(arr)29 fmt.Println(RemoveOutliers(arr))30}31import (32func main() {33 var arr = []int{}34 rand.Seed(time.Now().UnixNano())35 for i := 0; i < 10; i++ {36 arr = append(arr, rand.Intn(100))37 }38 fmt.Println(arr)39 fmt.Println(RemoveOutliers(arr))40}41import (42func main() {43 var arr = []int{}44 rand.Seed(time.Now().UnixNano())45 for i := 0; i < 10; i++ {46 arr = append(arr, rand
RemoveOutliers
Using AI Code Generation
1import (2func main() {3 canvas := svg.New(os.Stdout)4 canvas.Start(width, height)5 canvas.Rect(0, 0, width, height, "fill:white")6 canvas.Gstyle("fill:none;stroke:black;stroke-width:1")7 s := stats.New()8 s.Add(1, 1)9 s.Add(2, 2)10 s.Add(3, 3)11 s.Add(4, 4)12 s.Add(5, 5)13 s.Add(6, 6)14 s.Add(7, 7)15 s.Add(8, 8)16 s.Add(9, 9)17 s.Add(10, 10)18 s.Add(11, 11)19 s.Add(12, 12)20 s.Add(13, 13)21 s.Add(14, 14)22 s.Add(15, 15)23 s.Add(16, 16)24 s.Add(17, 17)25 s.Add(18, 18)26 s.Add(19, 19)27 s.Add(20, 20)28 s.Add(21, 21)29 s.Add(22, 22)30 s.Add(23, 23)31 s.Add(24, 24)32 s.Add(25, 25)33 s.Add(26, 26)34 s.Add(27, 27)35 s.Add(28, 28)36 s.Add(29, 29)37 s.Add(30, 30)38 s.Add(31, 31)39 s.Add(32, 32)40 s.Add(33, 33)41 s.Add(34, 34)42 s.Add(35, 35)43 s.Add(36, 36)44 s.Add(37, 37)45 s.Add(38, 38)46 s.Add(39, 39)47 s.Add(40, 40)48 s.Add(41, 41)49 s.Add(
RemoveOutliers
Using AI Code Generation
1import (2func main() {3 s := make([]float64, 1000)4 for i := 0; i < 1000; i++ {5 s[i] = math.Floor(rand.NormFloat64()*stdDev + mean)6 }7 fmt.Printf("Mean before: %.2f8", stats.Mean(s))9 fmt.Printf("Standard deviation before: %.2f10", stats.StdDev(s))11 stats.RemoveOutliers(&s, 1.0)12 fmt.Printf("Mean after: %.2f13", stats.Mean(s))14 fmt.Printf("Standard deviation after: %.2f15", stats.StdDev(s))16}
RemoveOutliers
Using AI Code Generation
1import (2func main() {3 rand.Seed(time.Now().UnixNano())4 randomNumbers := make([]float64, 100)5 for i := 0; i < 100; i++ {6 randomNumbers[i] = rand.Float64() * 1007 }8 s := stats.New(randomNumbers)9 s.RemoveOutliers(10)10 fmt.Printf("The summary of the data set is:11 fmt.Printf("Mean: %f12", s.Mean())13 fmt.Printf("Median: %f14", s.Median())15 fmt.Printf("Mode: %f16", s.Mode())17 fmt.Printf("Standard Deviation: %f18", s.StandardDeviation())19 fmt.Printf("Variance: %f20", s.Variance())21}22Akshay Babloo is a software engineer at Microsoft. He is a Microsoft MVP for Visual Studio and Development Technologies. He has been developing software for more than 10 years. He has worked on a variety of projects ranging from Windows Phone to the Azure cloud platform. He has also worked on many different technologies including C#, ASP.NET, ASP.NET MVC, WPF, Windows Phone, Windows Azure, SQL Server, and many more. He has been a speaker at many conferences and user groups. He has also written many technical articles on his blog. He is a member of the .NET Foundation. He is also a Microsoft Certified Trainer (MCT). He is a Microsoft Certified Professional (MCP). He is also a Microsoft Certified Solution Developer (MCSD). He is a Microsoft Certified Technology
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!