How to use fillCache method of regression Package

Best Keploy code snippet using regression.fillCache

regression.go

Source:regression.go Github

copy

Full Screen

...391 fmt.Println("found invalid value in json", j, x.Kind())392 }393 return o394}395func (r *Regression) fillCache(ctx context.Context, t *models.TestCase) (string, error) {396 index := fmt.Sprintf("%s-%s-%s", t.CID, t.AppID, t.URI)397 _, ok1 := r.noisyFields[index]398 _, ok2 := r.fieldCounts[index]399 if ok1 && ok2 {400 return index, nil401 }402 r.mu.Lock()403 defer r.mu.Unlock()404 // check again after the lock405 _, ok1 = r.noisyFields[index]406 _, ok2 = r.fieldCounts[index]407 if !ok1 || !ok2 {408 var anchors []map[string][]string409 fieldCounts, noisyFields := map[string]map[string]int{}, map[string]bool{}410 tcs, err := r.tdb.GetKeys(ctx, t.CID, t.AppID, t.URI)411 if err != nil {412 return "", err413 }414 for _, v := range tcs {415 //var appAnchors map[string][]string416 //for _, a := range v.Anchors {417 // appAnchors[a] = v.AllKeys[a]418 //}419 anchors = append(anchors, v.Anchors)420 for k, v1 := range v.AllKeys {421 if fieldCounts[k] == nil {422 fieldCounts[k] = map[string]int{}423 }424 for _, v2 := range v1 {425 fieldCounts[k][v2] = fieldCounts[k][v2] + 1426 }427 if !isAnchor(fieldCounts[k]) {428 noisyFields[k] = true429 }430 }431 }432 r.fieldCounts[index], r.noisyFields[index], r.anchors[index] = fieldCounts, noisyFields, anchors433 }434 return index, nil435}436func (r *Regression) isDup(ctx context.Context, t *models.TestCase) (bool, error) {437 reqKeys := map[string][]string{}438 filterKeys := map[string][]string{}439 index, err := r.fillCache(ctx, t)440 if err != nil {441 return false, err442 }443 // add headers444 for k, v := range t.HttpReq.Header {445 reqKeys["header."+k] = []string{strings.Join(v, "")}446 }447 // add url params448 for k, v := range t.HttpReq.URLParams {449 reqKeys["url_params."+k] = []string{v}450 }451 // add body if it is a valid json452 if json.Valid([]byte(t.HttpReq.Body)) {453 var result interface{}...

Full Screen

Full Screen

fillCache

Using AI Code Generation

copy

Full Screen

1import (2func main() {3 var (4 f, err := os.Open("data.txt")5 if err != nil {6 log.Fatal(err)7 }8 defer f.Close()9 scanner := bufio.NewScanner(f)10 for scanner.Scan() {11 line := strings.Split(scanner.Text(), " ")12 x, err := strconv.ParseFloat(line[0], 64)13 if err != nil {14 log.Fatal(err)15 }16 y, err := strconv.ParseFloat(line[1], 64)17 if err != nil {18 log.Fatal(err)19 }20 xAxis = append(xAxis, x)21 yAxis = append(yAxis, y)22 }23 r := NewRegression(xAxis, yAxis)24 r.FillCache()25 slope, intercept := r.GetSlopeIntercept()26 start := time.Now()27 predictedValue := r.Predict(5.5)28 end := time.Now()29 elapsed := end.Sub(start)30 fmt.Println("Predicted value for 5.5 is ", predictedValue)31 fmt.Println("Time taken to predict the value is ", elapsed)32 graph := chart.Chart{33 Series: []chart.Series{34 chart.ContinuousSeries{35 Style: chart.Style{36 StrokeColor: chart.GetDefaultColor(0).WithAlpha(64),37 FillColor: chart.GetDefaultColor(0).WithAlpha(64),38 },

Full Screen

Full Screen

fillCache

Using AI Code Generation

copy

Full Screen

1import (2type Regression struct {3}4func NewRegression(iterations int, learningRate float64) *Regression {5 return &Regression{6 }7}8func (r *Regression) Fit(features, labels []float64) {9 r.featureMean = make([]float64, len(features))10 r.featureStd = make([]float64, len(features))11 for i := 0; i < len(features); i++ {12 r.featureMean[i] = mean(features)13 r.featureStd[i] = standardDeviation(features)14 for j := 0; j < len(features); j++ {15 features[j] = (features[j] - r.featureMean[i]) / r.featureStd[i]16 }17 }18 r.labelMean = mean(labels)19 r.labelStd = standardDeviation(labels)20 for i := 0; i < len(labels); i++ {21 labels[i] = (labels[i] - r.labelMean) / r.labelStd22 }23 r.coefficients = make([]float64, len(features))24 r.intercept = rand.Float64()25 r.gradientDescent(features, labels)26}27func (r *Regression) Predict(features []float64) []float64 {28 for i := 0; i < len(features); i++ {29 features[i] = (features[i] - r.featureMean[i]) / r.featureStd[i]30 }31 predicted := make([]float64, len(features))

Full Screen

Full Screen

fillCache

Using AI Code Generation

copy

Full Screen

1import (2func main() {3 reg := regression.New()4 rand.Seed(int64(time.Now().Nanosecond()))5 x := mat64.NewVector(100, nil)6 y := mat64.NewVector(100, nil)7 for i := 0; i < 100; i++ {8 x.SetVec(i, rand.Float64())9 y.SetVec(i, rand.Float64())10 }11 reg.FillCache(x, y)12 prediction := reg.Predict(0.5)13 fmt.Println(prediction)14}

Full Screen

Full Screen

fillCache

Using AI Code Generation

copy

Full Screen

1import (2func main() {3 r.FillCache("data.csv")4 fmt.Println(r.Cache)5 os.Exit(0)6}7import (8func main() {9 r.FillCache("data.csv")10 fmt.Println(r.Cache)11 fmt.Println(r.Regression())12 os.Exit(0)13}14import (15func main() {16 r.FillCache("data.csv")17 fmt.Println(r.Cache)18 fmt.Println(r.Regression())19 fmt.Println(r.Predict(1.0))20 os.Exit(0)21}22import (23func main() {24 r.FillCache("data.csv")25 fmt.Println(r.Cache)26 fmt.Println(r.Regression())27 fmt.Println(r.Predict(1.0))28 fmt.Println(r.Predict(2.0))29 os.Exit(0)30}31import (32func main() {33 r.FillCache("data.csv")34 fmt.Println(r.Cache)35 fmt.Println(r.Regression())36 fmt.Println(r.Predict(1.0))37 fmt.Println(r.Predict(2.0))

Full Screen

Full Screen

fillCache

Using AI Code Generation

copy

Full Screen

1import (2func main() {3 reg := regression.NewRegression()4 reg.FillCache("data.txt")5 fmt.Println(reg.Cache)6}7import (8func main() {9 reg := regression.NewRegression()10 reg.FillCache("data.txt")11 fmt.Println(reg.Cache)12 fmt.Println(reg.Predict(1.5))13}14import (15func main() {16 reg := regression.NewRegression()17 reg.FillCache("data.txt")18 fmt.Println(reg.Cache)19 fmt.Println(reg.Predict(1.5))20 reg.Cache = append(reg.Cache, regression.DataPoint{X: 2.0, Y: 2.0})21 fmt.Println(reg.Cache)22 fmt.Println(reg.Predict(1.5))23}24import (25func main() {26 reg := regression.NewRegression()27 reg.FillCache("data.txt")28 fmt.Println(reg.Cache)29 fmt.Println(reg.Predict(1.5))30 reg.Cache = append(reg.Cache, regression.DataPoint{X: 2.0, Y: 2.0})31 fmt.Println(reg.Cache)32 fmt.Println(reg.Predict(1.5))33 reg.Cache = append(reg.Cache, regression.DataPoint{X: 3.0, Y:

Full Screen

Full Screen

fillCache

Using AI Code Generation

copy

Full Screen

1import (2func main() {3 fmt.Println("Hello World")4 reg.FillCache()5}6import (7func main() {8 fmt.Println("Hello World")9 reg.FillCache()10}11import (12func main() {13 fmt.Println("Hello World")14 reg.FillCache()15}16import (17func main() {18 fmt.Println("Hello World")19 reg.FillCache()20}21import (22func main() {23 fmt.Println("Hello World")24 reg.FillCache()25}26import (27func main() {28 fmt.Println("Hello World")29 reg.FillCache()30}31import (32func main() {33 fmt.Println("Hello World")34 reg.FillCache()35}36import (37func main() {38 fmt.Println("Hello World")39 reg.FillCache()40}41import (42func main() {43 fmt.Println("Hello World")44 reg.FillCache()45}

Full Screen

Full Screen

fillCache

Using AI Code Generation

copy

Full Screen

1import (2func main() {3 reg := NewRegression()4 x := make([]float64, 100)5 y := make([]float64, 100)6 for i := 0; i < 100; i++ {7 x[i] = rand.Float64() * 1008 y[i] = math.Sin(x[i]) + rand.Float64()9 }10 reg.FillCache(x, y)11 fmt.Println(reg)12}13import (14func main() {15 reg := NewRegression()16 x := make([]float64, 100)17 y := make([]float64, 100)18 for i := 0; i < 100; i++ {19 x[i] = rand.Float64() * 10020 y[i] = math.Sin(x[i]) + rand.Float64()21 }22 reg.FillCache(x, y)23 fmt.Println(reg.Predict(50))24}25import (26func main() {27 reg := NewRegression()28 x := make([]float64, 100)29 y := make([]float64, 100)30 for i := 0; i < 100; i++ {31 x[i] = rand.Float64() * 10032 y[i] = math.Sin(x[i]) + rand.Float64()33 }34 reg.FillCache(x, y)35 fmt.Println(reg.Predict(50))36}37import (

Full Screen

Full Screen

fillCache

Using AI Code Generation

copy

Full Screen

1import (2func main() {3 r := new(regression.Regression)4 r.SetObserved("Y")5 r.SetVar(0, "X")6 r.Train(regression.Data{7 {X: []float64{1}, Y: 1},8 {X: []float64{2}, Y: 2},9 {X: []float64{3}, Y: 3},10 {X: []float64{4}, Y: 4},11 {X: []float64{5}, Y: 5},12 {X: []float64{6}, Y: 6},13 {X: []float64{7}, Y: 7},14 {X: []float64{8}, Y: 8},15 {X: []float64{9}, Y: 9},16 {X: []float64{10}, Y: 10},17 })18 fmt.Printf("formula:\n%v\n\n", r.Formula)19}20import (21func main() {22 r := new(regression.Regression)23 r.SetObserved("Y")24 r.SetVar(0, "X")25 r.Train(regression.Data{26 {X: []float64{1}, Y: 1},27 {X: []float64{2}, Y: 2},28 {X: []float64{3}, Y: 3},29 {X: []float64{4}, Y: 4

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run Keploy automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful