How to use addBody method of regression Package

Best Keploy code snippet using regression.addBody

addBody

Using AI Code Generation

copy

Full Screen

1import (2func main() {3 r.SetObserved("Y")4 r.SetVar(0, "X")5 r.Train(6 regression.Data{7 X: []float64{1, 2, 3, 4, 5},8 Y: []float64{2, 4, 6, 8, 10},9 },10 r.Train(11 regression.Data{12 X: []float64{6, 7, 8, 9, 10},13 Y: []float64{12, 14, 16, 18, 20},14 },15 r.Run()16 fmt.Printf("\nRegression Formula:\n%v\n", r.Formula)17}

Full Screen

Full Screen

addBody

Using AI Code Generation

copy

Full Screen

1import (2func main() {3 r := new(regression.Regression)4 r.SetObserved("Y")5 r.SetVar(0, "X")6 r.AddDataPoint([]float64{1, 2}, []float64{2.5})7 r.AddDataPoint([]float64{2, 4}, []float64{4.5})8 r.AddDataPoint([]float64{3, 6}, []float64{6.5})9 r.AddDataPoint([]float64{4, 8}, []float64{8.5})10 r.Run()11 fmt.Printf("%+v\n", r.Coeffs)12 fmt.Printf("R2: %0.2f\n", r.R2)13}14import (15func main() {16 r := new(regression.Regression)17 r.SetObserved("Y")18 r.SetVar(0, "X")19 r.AddDataPoint([]float64{1, 2}, []float64{2.5})20 r.AddDataPoint([]float64{2, 4}, []float64{4.5})21 r.AddDataPoint([]float64{3, 6}, []float64{6.5})22 r.AddDataPoint([]float64{4, 8}, []float64{8.5})23 r.Run()24 fmt.Printf("%+v\n", r.Coeffs)25 fmt.Printf("R2: %0.2f\n", r.R2)26}27import (28func main() {29 r := new(regression.Regression)30 r.SetObserved("Y")31 r.SetVar(0, "X")32 r.AddDataPoint([]float64{1

Full Screen

Full Screen

addBody

Using AI Code Generation

copy

Full Screen

1import (2func main() {3 r.SetObserved("Weight")4 r.SetVar(0, "Height")5 f, err := os.Open("data.csv")6 if err != nil {7 log.Fatal(err)8 }9 defer f.Close()10 records, err := regression.LoadRecords(f)11 if err != nil {12 log.Fatal(err)13 }14 if err := r.Train(records); err != nil {15 log.Fatal(err)16 }17 inputs = append(inputs, 70)18 fmt.Printf("Inputs: %v\n", inputs)19 fmt.Printf("Output: %0.2f\n", r.Predict(inputs))20}

Full Screen

Full Screen

addBody

Using AI Code Generation

copy

Full Screen

1import java.io.File;2import java.io.FileNotFoundException;3import java.io.IOException;4import java.util.ArrayList;5import java.util.Scanner;6public class Main {7 public static void main(String[] args) throws FileNotFoundException, IOException {8 Regression reg = new Regression();9 File file = new File("data.txt");10 Scanner scan = new Scanner(file);11 while(scan.hasNextLine()) {12 String line = scan.nextLine();13 String[] entries = line.split(" ");14 double[] data = new double[entries.length];15 for(int i = 0; i < entries.length; i++) {16 data[i] = Double.parseDouble(entries[i]);17 }18 reg.addBody(data);19 }

Full Screen

Full Screen

addBody

Using AI Code Generation

copy

Full Screen

1import (2type regression struct {3}4func (r *regression) init(n int) {5 r.weights = make([]float64, n)6}7func (r *regression) predict(input []float64) float64 {8 for i := 0; i < len(r.weights); i++ {9 }10}11func (r *regression) addBody(input []float64, output float64) {12 for i := 0; i < len(r.weights); i++ {13 }14}15func (r *regression) train(input [][]float64, output []float64, epochs int, learningRate float64) {16 for i := 0; i < epochs; i++ {17 for j := 0; j < len(input); j++ {18 prediction := r.predict(input[j])19 for k := 0; k < len(r.weights); k++ {20 }21 }22 }23}24func (r *regression) rmse(input [][]float64, output []float64) float64 {25 for i := 0; i < len(input); i++ {26 prediction := r.predict(input[i])27 sum += math.Pow(prediction-output[i], 2)28 }29 return math.Sqrt(sum / float64(len(input)))30}31func main() {32 rand.Seed(time.Now().UnixNano())33 r.init(3)34 input := [][]float64{35 {1, 2, 3},36 {4, 5, 6},37 {7, 8, 9},38 {10, 11, 12},39 {13, 14, 15},40 }41 output := []float64{1, 2, 3, 4, 5}42 r.train(input, output, 1000, 0.001)

Full Screen

Full Screen

addBody

Using AI Code Generation

copy

Full Screen

1import java.io.*;2import java.util.*;3import java.lang.*;4import java.io.File;5import java.io.FileNotFoundException;6import java.io.IOException;7import java.util.Scanner;8import java.util.ArrayList;9import java.uti

Full Screen

Full Screen

addBody

Using AI Code Generation

copy

Full Screen

1import "fmt"2func main() {3 fmt.Println("Hello, playground")4 r := Regression{}5 r.addBody(1,2)6 r.addBody(2,3)7 r.addBody(3,4)8 r.addBody(4,5)9 r.addBody(5,6)10 r.addBody(6,7)11 r.addBody(7,8)12 r.addBody(8,9)13 r.addBody(9,10)14 r.addBody(10,11)15 r.addBody(11,12)16 r.addBody(12,13)17 r.addBody(13,14)18 r.addBody(14,15)19 r.addBody(15,16)20 r.addBody(16,17)21 r.addBody(17,18)22 r.addBody(18,19)23 r.addBody(19,20)24 r.addBody(20,21)25 r.addBody(21,22)26 r.addBody(22,23)27 r.addBody(23,24)28 r.addBody(24,25)29 r.addBody(25,26)30 r.addBody(26,27)31 r.addBody(27,28)32 r.addBody(28,29)33 r.addBody(29,30)34 r.addBody(30,31)35 r.addBody(31,32)36 r.addBody(32,33)37 r.addBody(33,34)38 r.addBody(34,35)39 r.addBody(35,36)40 r.addBody(36,37)41 r.addBody(37,38)42 r.addBody(38,39)43 r.addBody(39,40)44 r.addBody(40,41)45 r.addBody(41,42)46 r.addBody(42,43)47 r.addBody(43,44)48 r.addBody(44,45)49 r.addBody(45,46)50 r.addBody(46,47)51 r.addBody(47,48)52 r.addBody(48,49)53 r.addBody(49,50)54 r.addBody(50,51)55 r.addBody(51,52)56 r.addBody(52,53)57 r.addBody(53

Full Screen

Full Screen

addBody

Using AI Code Generation

copy

Full Screen

1import (2import "github.com/sajari/regression"3func main() {4 r.SetObserved("Body Fat")5 r.SetVar(0, "Weight")6 r.SetVar(1, "Height")7 r.SetVar(2, "Neck")8 r.SetVar(3, "Chest")9 r.SetVar(4, "Abdomen")10 r.SetVar(5, "Hip")11 r.SetVar(6, "Thigh")12 r.SetVar(7, "Knee")13 r.SetVar(8, "Ankle")14 r.SetVar(9, "Biceps")15 r.SetVar(10, "Forearm")16 r.SetVar(11, "Wrist")17 r.Train(regression.DataPoint(12.3, []float64{154, 69, 36, 92, 102, 90, 59, 37, 23, 32, 27, 17}))18 r.Train(regression.DataPoint(6.3, []float64{191, 71, 43, 101, 89, 104, 58, 38, 21, 33, 30, 18}))19 r.Train(regression.DataPoint(25.6, []float64{195, 70, 40, 108, 97, 93, 62, 39, 22, 37, 28, 20}))20 r.Train(regression.DataPoint(10.4, []float64{189, 68, 41, 110, 110, 104, 63, 40, 21, 34, 24, 18}))21 r.Train(regression.DataPoint(28.4, []float64{179, 68, 38, 97, 103, 101, 59, 37, 23,

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run Keploy automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.