Best Keploy code snippet using regression.addBody
addBody
Using AI Code Generation
1import (2func main() {3 r.SetObserved("Y")4 r.SetVar(0, "X")5 r.Train(6 regression.Data{7 X: []float64{1, 2, 3, 4, 5},8 Y: []float64{2, 4, 6, 8, 10},9 },10 r.Train(11 regression.Data{12 X: []float64{6, 7, 8, 9, 10},13 Y: []float64{12, 14, 16, 18, 20},14 },15 r.Run()16 fmt.Printf("\nRegression Formula:\n%v\n", r.Formula)17}
addBody
Using AI Code Generation
1import (2func main() {3 r := new(regression.Regression)4 r.SetObserved("Y")5 r.SetVar(0, "X")6 r.AddDataPoint([]float64{1, 2}, []float64{2.5})7 r.AddDataPoint([]float64{2, 4}, []float64{4.5})8 r.AddDataPoint([]float64{3, 6}, []float64{6.5})9 r.AddDataPoint([]float64{4, 8}, []float64{8.5})10 r.Run()11 fmt.Printf("%+v\n", r.Coeffs)12 fmt.Printf("R2: %0.2f\n", r.R2)13}14import (15func main() {16 r := new(regression.Regression)17 r.SetObserved("Y")18 r.SetVar(0, "X")19 r.AddDataPoint([]float64{1, 2}, []float64{2.5})20 r.AddDataPoint([]float64{2, 4}, []float64{4.5})21 r.AddDataPoint([]float64{3, 6}, []float64{6.5})22 r.AddDataPoint([]float64{4, 8}, []float64{8.5})23 r.Run()24 fmt.Printf("%+v\n", r.Coeffs)25 fmt.Printf("R2: %0.2f\n", r.R2)26}27import (28func main() {29 r := new(regression.Regression)30 r.SetObserved("Y")31 r.SetVar(0, "X")32 r.AddDataPoint([]float64{1
addBody
Using AI Code Generation
1import (2func main() {3 r.SetObserved("Weight")4 r.SetVar(0, "Height")5 f, err := os.Open("data.csv")6 if err != nil {7 log.Fatal(err)8 }9 defer f.Close()10 records, err := regression.LoadRecords(f)11 if err != nil {12 log.Fatal(err)13 }14 if err := r.Train(records); err != nil {15 log.Fatal(err)16 }17 inputs = append(inputs, 70)18 fmt.Printf("Inputs: %v\n", inputs)19 fmt.Printf("Output: %0.2f\n", r.Predict(inputs))20}
addBody
Using AI Code Generation
1import java.io.File;2import java.io.FileNotFoundException;3import java.io.IOException;4import java.util.ArrayList;5import java.util.Scanner;6public class Main {7 public static void main(String[] args) throws FileNotFoundException, IOException {8 Regression reg = new Regression();9 File file = new File("data.txt");10 Scanner scan = new Scanner(file);11 while(scan.hasNextLine()) {12 String line = scan.nextLine();13 String[] entries = line.split(" ");14 double[] data = new double[entries.length];15 for(int i = 0; i < entries.length; i++) {16 data[i] = Double.parseDouble(entries[i]);17 }18 reg.addBody(data);19 }
addBody
Using AI Code Generation
1import (2type regression struct {3}4func (r *regression) init(n int) {5 r.weights = make([]float64, n)6}7func (r *regression) predict(input []float64) float64 {8 for i := 0; i < len(r.weights); i++ {9 }10}11func (r *regression) addBody(input []float64, output float64) {12 for i := 0; i < len(r.weights); i++ {13 }14}15func (r *regression) train(input [][]float64, output []float64, epochs int, learningRate float64) {16 for i := 0; i < epochs; i++ {17 for j := 0; j < len(input); j++ {18 prediction := r.predict(input[j])19 for k := 0; k < len(r.weights); k++ {20 }21 }22 }23}24func (r *regression) rmse(input [][]float64, output []float64) float64 {25 for i := 0; i < len(input); i++ {26 prediction := r.predict(input[i])27 sum += math.Pow(prediction-output[i], 2)28 }29 return math.Sqrt(sum / float64(len(input)))30}31func main() {32 rand.Seed(time.Now().UnixNano())33 r.init(3)34 input := [][]float64{35 {1, 2, 3},36 {4, 5, 6},37 {7, 8, 9},38 {10, 11, 12},39 {13, 14, 15},40 }41 output := []float64{1, 2, 3, 4, 5}42 r.train(input, output, 1000, 0.001)
addBody
Using AI Code Generation
1import java.io.*;2import java.util.*;3import java.lang.*;4import java.io.File;5import java.io.FileNotFoundException;6import java.io.IOException;7import java.util.Scanner;8import java.util.ArrayList;9import java.uti
addBody
Using AI Code Generation
1import "fmt"2func main() {3 fmt.Println("Hello, playground")4 r := Regression{}5 r.addBody(1,2)6 r.addBody(2,3)7 r.addBody(3,4)8 r.addBody(4,5)9 r.addBody(5,6)10 r.addBody(6,7)11 r.addBody(7,8)12 r.addBody(8,9)13 r.addBody(9,10)14 r.addBody(10,11)15 r.addBody(11,12)16 r.addBody(12,13)17 r.addBody(13,14)18 r.addBody(14,15)19 r.addBody(15,16)20 r.addBody(16,17)21 r.addBody(17,18)22 r.addBody(18,19)23 r.addBody(19,20)24 r.addBody(20,21)25 r.addBody(21,22)26 r.addBody(22,23)27 r.addBody(23,24)28 r.addBody(24,25)29 r.addBody(25,26)30 r.addBody(26,27)31 r.addBody(27,28)32 r.addBody(28,29)33 r.addBody(29,30)34 r.addBody(30,31)35 r.addBody(31,32)36 r.addBody(32,33)37 r.addBody(33,34)38 r.addBody(34,35)39 r.addBody(35,36)40 r.addBody(36,37)41 r.addBody(37,38)42 r.addBody(38,39)43 r.addBody(39,40)44 r.addBody(40,41)45 r.addBody(41,42)46 r.addBody(42,43)47 r.addBody(43,44)48 r.addBody(44,45)49 r.addBody(45,46)50 r.addBody(46,47)51 r.addBody(47,48)52 r.addBody(48,49)53 r.addBody(49,50)54 r.addBody(50,51)55 r.addBody(51,52)56 r.addBody(52,53)57 r.addBody(53
addBody
Using AI Code Generation
1import (2import "github.com/sajari/regression"3func main() {4 r.SetObserved("Body Fat")5 r.SetVar(0, "Weight")6 r.SetVar(1, "Height")7 r.SetVar(2, "Neck")8 r.SetVar(3, "Chest")9 r.SetVar(4, "Abdomen")10 r.SetVar(5, "Hip")11 r.SetVar(6, "Thigh")12 r.SetVar(7, "Knee")13 r.SetVar(8, "Ankle")14 r.SetVar(9, "Biceps")15 r.SetVar(10, "Forearm")16 r.SetVar(11, "Wrist")17 r.Train(regression.DataPoint(12.3, []float64{154, 69, 36, 92, 102, 90, 59, 37, 23, 32, 27, 17}))18 r.Train(regression.DataPoint(6.3, []float64{191, 71, 43, 101, 89, 104, 58, 38, 21, 33, 30, 18}))19 r.Train(regression.DataPoint(25.6, []float64{195, 70, 40, 108, 97, 93, 62, 39, 22, 37, 28, 20}))20 r.Train(regression.DataPoint(10.4, []float64{189, 68, 41, 110, 110, 104, 63, 40, 21, 34, 24, 18}))21 r.Train(regression.DataPoint(28.4, []float64{179, 68, 38, 97, 103, 101, 59, 37, 23,
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.