Best Keploy code snippet using regression.Start
regression_test.go
Source: regression_test.go
...27 {0, 0},28 {1, 1},29 },30 regression: &Regression{31 Start: 0,32 End: 1,33 Intercept: 0,34 Gradient: 1,35 Width: 0,36 },37 },38 "two negative samples": {39 input: []Sample{40 {-1, -1},41 {0, 0},42 },43 regression: &Regression{44 Start: -1,45 End: 0,46 Intercept: 0,47 Gradient: 1,48 Width: 0,49 },50 },51 "lower gradient line": {52 input: []Sample{53 {1, 1},54 {3, 2},55 {5, 3},56 },57 regression: &Regression{58 Start: 1,59 End: 5,60 Intercept: 0.5,61 Gradient: 0.5,62 Width: 0,63 },64 },65 "non-zero width line": {66 input: []Sample{67 {1, 2},68 {2, 1},69 {2, 3},70 {3, 2},71 {3, 4},72 {4, 3},73 },74 regression: &Regression{75 Start: 1,76 End: 4,77 Intercept: 1.363,78 Gradient: 0.454,79 Width: 1.142,80 },81 },82 }83 for name, tc := range tests {84 t.Run(name, func(t *testing.T) {85 regressionBuffer := RegressionBuffer{}86 for _, s := range tc.input {87 regressionBuffer.Add(s)88 }89 regression, err := regressionBuffer.Regression()90 if tc.err != "" && err == nil {91 t.Fatalf("expected error: %v, got no error", tc.err)92 }93 if tc.err != "" && tc.err != err.Error() {94 t.Fatalf("expected error: %v, got: %v", tc.err, err.Error())95 }96 if tc.regression != nil {97 if tc.regression.Start != regression.Start {98 t.Fatalf("expected Start: %v, got: %v", tc.regression.Start, regression.Start)99 }100 if tc.regression.End != regression.End {101 t.Fatalf("expected End: %v, got: %v", tc.regression.End, regression.End)102 }103 if !float64Equals(tc.regression.Intercept, regression.Intercept) {104 t.Fatalf("expected Intercept: %v, got: %v", tc.regression.Intercept, regression.Intercept)105 }106 if !float64Equals(tc.regression.Gradient, regression.Gradient) {107 t.Fatalf("expected Gradient: %v, got: %v", tc.regression.Gradient, regression.Gradient)108 }109 if !float64Equals(tc.regression.Width, regression.Width) {110 t.Fatalf("expected Width: %v, got: %v", tc.regression.Width, regression.Width)111 }112 }...
regression.go
Source: regression.go
...7 X float648 Y float649}10type Regression struct {11 Start float6412 End float6413 Intercept float6414 Gradient float6415 Width float6416}17type RegressionBuffer struct {18 start float6419 end float6420 n float6421 sx float6422 sy float6423 sxy float6424 sx2 float6425 sy2 float6426 width float6427}28func (r *RegressionBuffer) Add(s Sample) {29 if r.n == 0 {30 r.start = s.X31 }32 r.end = s.X33 r.n++34 r.sx = r.sx + s.X35 r.sy = r.sy + s.Y36 r.sxy = r.sxy + s.X*s.Y37 r.sx2 = r.sx2 + s.X*s.X38 r.sy2 = r.sy2 + s.Y*s.Y39 if r.n >= 2 {40 gradient, err := r.Gradient()41 if err != nil {42 panic(err)43 }44 intercept, err := r.Intercept()45 if err != nil {46 panic(err)47 }48 d := math.Abs(s.Y - (gradient*s.X + intercept))49 r.width = math.Max(r.width, d)50 }51}52func (r *RegressionBuffer) Intercept() (float64, error) {53 if r.n < 2 {54 return 0, errors.New("intercept requires at least two samples")55 }56 intercept := (r.sy*r.sx2 - r.sx*r.sxy) / (r.n*r.sx2 - r.sx*r.sx)57 return intercept, nil58}59func (r *RegressionBuffer) Gradient() (float64, error) {60 if r.n < 2 {61 return 0, errors.New("gradient requires at least two samples")62 }63 gradient := (r.n*r.sxy - r.sx*r.sy) / (r.n*r.sx2 - r.sx*r.sx)64 return gradient, nil65}66func (r *RegressionBuffer) Regression() (*Regression, error) {67 if r.n < 2 {68 return nil, errors.New("regression requires at least two samples")69 }70 intercept, err := r.Intercept()71 if err != nil {72 return nil, err73 }74 gradient, err := r.Gradient()75 if err != nil {76 return nil, err77 }78 regression := Regression{79 Start: r.start,80 End: r.end,81 Intercept: intercept,82 Gradient: gradient,83 Width: r.width,84 }85 return ®ression, nil86}...
ilplang_listener.go
Source: ilplang_listener.go
...3import "github.com/antlr/antlr4/runtime/Go/antlr"4// ILPLangListener is a complete listener for a parse tree produced by ILPLangParser.5type ILPLangListener interface {6 antlr.ParseTreeListener7 // EnterStart is called when entering the start production.8 EnterStart(c *StartContext)9 // EnterClassification_task is called when entering the classification_task production.10 EnterClassification_task(c *Classification_taskContext)11 // EnterRegression_task is called when entering the regression_task production.12 EnterRegression_task(c *Regression_taskContext)13 // EnterTerm is called when entering the term production.14 EnterTerm(c *TermContext)15 // EnterRegression_term is called when entering the regression_term production.16 EnterRegression_term(c *Regression_termContext)17 // ExitStart is called when exiting the start production.18 ExitStart(c *StartContext)19 // ExitClassification_task is called when exiting the classification_task production.20 ExitClassification_task(c *Classification_taskContext)21 // ExitRegression_task is called when exiting the regression_task production.22 ExitRegression_task(c *Regression_taskContext)23 // ExitTerm is called when exiting the term production.24 ExitTerm(c *TermContext)25 // ExitRegression_term is called when exiting the regression_term production.26 ExitRegression_term(c *Regression_termContext)27}...
Start
Using AI Code Generation
1import (2func main() {3 r := new(regression.Regression)4 r.SetObserved("Y")5 r.SetVar(0, "X")6 r.Train(7 regression.DataPoint(2.71, []float64{1.0}),8 regression.DataPoint(3.14, []float64{2.0}),9 regression.DataPoint(1.41, []float64{3.0}),10 regression.DataPoint(1.62, []float64{4.0}),11 r.Run()12 fmt.Printf("\nRegression formula:\n%v\n", r.Formula)13}
Start
Using AI Code Generation
1import (2func main() {3 r.SetObserved("y")4 r.SetVar(0, "x")5 r.Train(6 regression.DataPoint(2.71, []float64{1}),7 regression.DataPoint(4.62, []float64{2}),8 regression.DataPoint(9.26, []float64{3}),9 regression.DataPoint(12.85, []float64{4}),10 regression.DataPoint(19.31, []float64{5}),11 r.Run()12 fmt.Printf("\nRegression Formula:\n%v\n", r.Formula)13 fmt.Printf("\nR2: %v\n", r.R2)14}15import (16func main() {17 r.SetObserved("y")18 r.SetVar(0, "x")19 r.Train(20 regression.DataPoint(2.71, []float64{1}),21 regression.DataPoint(4.62, []float64{2}),22 regression.DataPoint(9.26, []float64{3}),23 regression.DataPoint(12.85, []float64{4}),24 regression.DataPoint(19.31, []float64{5}),25 r.Fit()26 fmt.Printf("\nRegression Formula:\n%v\n", r.Formula)27 fmt.Printf("\nR2: %v\n", r.R2)28}29import (30func main() {31 r.SetObserved("y")32 r.SetVar(0, "x")33 r.Train(34 regression.DataPoint(2.71, []float64{1
Start
Using AI Code Generation
1import (2func main() {3 r.SetObserved("Y")4 r.SetVar(0, "X")5 r.Train(6 regression.Data{7 X: []float64{1, 2, 3, 4},8 Y: []float64{2, 4, 6, 8},9 },10 r.Run()11 fmt.Printf("\nRegression Formula:\n%v\n", r.Formula)12 fmt.Printf("\nRegression:\n%v\n", r)13 fmt.Printf("\nRegression Coefficients:\n%v\n", r.Coeffs)14 fmt.Printf("\nR2:\n%v\n", r.R2)15 fmt.Printf("\nSigma:\n%v\n", r.Sigma)16 fmt.Printf("\nF:\n%v\n", r.F)17 fmt.Printf("\nMSE:\n%v\n", r.MSE)18 fmt.Printf("\nAdj. R2:\n%v\n", r.AdjR2)19 fmt.Printf("\nStd. Error:\n%v\n", r.StdErr)20 fmt.Printf("\nT Stat:\n%v\n", r.TStat)21 fmt.Printf("\nSSR:\n%v\n", r.SSR)22 fmt.Printf("\nSSE:\n%v\n", r.SSE)23 fmt.Printf("\nSST:\n%v\n", r.SST)24 fmt.Printf("\nDFR:\n%v\n", r.DFR)25 fmt.Printf("\nDFE:\n%v\n", r.DFE)26 fmt.Printf("\nDFT:\n%v\n", r.DFT)27 fmt.Printf("\nF Stat:\n%v\n", r.FStat)28 fmt.Printf("\nProb (F Stat):\n%v\n", r.ProbFStat)29 fmt.Printf("\nProb (T Stat):\n%v\n", r.ProbTStat)30 fmt.Printf("\nAIC:\n%v\n", r.AIC)31 fmt.Printf("\nBIC:\n%v\n", r.BIC)32 fmt.Printf("\nLog-Likelihood:\n%v\n", r.LogLikelihood)33 fmt.Printf("\nDurbin-Watson:\n%v\n", r.DurbinWatson)
Start
Using AI Code Generation
1import (2func main() {3 r.SetObserved("Temperature")4 r.SetVar(0, "Humidity")5 r.Train(6 regression.DataPoint(22.1, []float64{71.1}),7 regression.DataPoint(19.4, []float64{69.8}),8 regression.DataPoint(18.1, []float64{68.0}),9 regression.DataPoint(17.3, []float64{66.2}),10 regression.DataPoint(15.5, []float64{65.4}),11 regression.DataPoint(15.1, []float64{64.7}),12 regression.DataPoint(14.4, []float64{63.0}),13 regression.DataPoint(13.5, []float64{61.3}),14 regression.DataPoint(12.5, []float64{59.0}),15 regression.DataPoint(11.9, []float64{57.5}),16 regression.DataPoint(11.0, []float64{55.6}),17 r.Run()18 fmt.Printf("\nRegression Formula:\n%v\n", r.Formula)19 fmt.Printf("\nR2: %v\n", r.R2)20}
Start
Using AI Code Generation
1import (2func main() {3 r.SetObserved("Y")4 r.SetVar(0, "X")5 r.Train(regression.Data{6 {X: []float64{0}, Y: 0},7 {X: []float64{1}, Y: 1},8 {X: []float64{2}, Y: 2},9 })10 r.Run()11 fmt.Printf("output: %s\n", r.Formula)12}
Start
Using AI Code Generation
1import (2func main() {3 r.SetObserved("y")4 r.SetVar(0, "x")5 rand.Seed(time.Now().UnixNano())6 for i := 0; i < 100; i++ {7 x := rand.Float64()8 y := 2*x + 1 + rand.Float64()9 r.Train(regression.DataPoint(y, []float64{x}))10 }11 r.Run()12 fmt.Printf("\nRegression Formula:\n")13 fmt.Printf("%v\n\n", r.Formula)14 fmt.Printf("Predicted values:\n")15 for x := 0.0; x <= 1.0; x += 0.1 {16 y, _ := r.Predict([]float64{x})17 fmt.Printf("x: %v, y: %0.2f\n", x, y)18 }19}
Start
Using AI Code Generation
1import (2func main() {3 r.SetObserved("Y")4 r.SetVar(0, "X")5 r.Train(regression.DataPoint(1, []float64{1}, []string{"X"}, 1))6 r.Train(regression.DataPoint(1, []float64{2}, []string{"X"}, 2))7 r.Train(regression.DataPoint(1, []float64{3}, []string{"X"}, 3))8 r.Train(regression.DataPoint(1, []float64{4}, []string{"X"}, 4))9 r.Train(regression.DataPoint(1, []float64{5}, []string{"X"}, 5))10 r.Train(regression.DataPoint(2, []float64{1}, []string{"X"}, 2))11 r.Train(regression.DataPoint(2, []float64{2}, []string{"X"}, 4))12 r.Train(regression.DataPoint(2, []float64{3}, []string{"X"}, 6))13 r.Train(regression.DataPoint(2, []float64{4}, []string{"X"}, 8))14 r.Train(regression.DataPoint(2, []float64{5}, []string{"X"}, 10))15 r.Train(regression.DataPoint(3, []float64{1}, []string{"X"}, 3))16 r.Train(regression.DataPoint(3, []float64{2}, []string{"X"}, 6))17 r.Train(regression.DataPoint(3, []float64{3}, []string{"X"}, 9))18 r.Train(regression.DataPoint(3, []float64{4}, []string{"X"}, 12))19 r.Train(regression.DataPoint(3, []float64{5}, []string{"X"}, 15))20 r.Train(regression.DataPoint(4, []float64{1}, []string{"X"}, 4))21 r.Train(regression.DataPoint(4, []float64{2}, []string
Start
Using AI Code Generation
1import (2func main() {3 r.SetObserved("Y")4 r.SetVar(0, "X")5 r.Train(regression.Data{6 {X: []float64{1}, Y: 1},7 {X: []float64{2}, Y: 2},8 {X: []float64{3}, Y: 3},9 {X: []float64{4}, Y: 4},10 {X: []float64{5}, Y: 5},11 {X: []float64{6}, Y: 6},12 {X: []float64{7}, Y: 7},13 {X: []float64{8}, Y: 8},14 {X: []float64{9}, Y: 9},15 {X: []float64{10}, Y: 10},16 {X: []float64{11}, Y: 11},17 {X: []float64{12}, Y: 12},18 {X: []float64{13}, Y: 13},19 {X: []float64{14}, Y: 14},20 {X: []float64{15}, Y: 15},21 {X: []float64{16}, Y: 16},22 {X: []float64{17}, Y: 17},23 {X: []float64{18}, Y: 18},24 {X: []float64{19}, Y: 19},25 {X: []float64{20}, Y: 20},26 })27 r.Run()28 fmt.Printf("\nRegression Formula:\n%v\n", r.Formula)29 fmt.Printf("\nR2:\n%v\n", r.R2)30 fmt.Printf("\nMAE:\n%v\n", r.MAE)31 fmt.Printf("\nRMSE:\n%v\n", math.Sqrt(r.MSE))32}
Start
Using AI Code Generation
1import (2func main() {3 r := new(regression.Regression)4 r.SetObserved("Y")5 r.SetVar(0, "X")6 r.Train(regression.DataPoint(1, 2))7 r.Train(regression.DataPoint(2, 3))8 r.Train(regression.DataPoint(3, 4))9 r.Train(regression.DataPoint(4, 5))10 r.Train(regression.DataPoint(5, 6))11 r.Train(regression.DataPoint(6, 7))12 r.Train(regression.DataPoint(7, 8))13 r.Train(regression.DataPoint(8, 9))14 r.Train(regression.DataPoint(9, 10))15 r.Train(regression.DataPoint(10, 11))16 r.Run()17 r.Summary()18 fmt.Printf("\nRegression formula:\n%v\n", r.Formula)19 fmt.Printf("\nR^2: %v\n", r.R2)20}
Start
Using AI Code Generation
1import java.util.*;2import java.io.*;3{4 public static void main(String[] args) {5 Regression r=new Regression();6 r.Start();7 }8}9import java.util.*;10import java.io.*;11{12 public void Start()13 {14 Scanner sc=new Scanner(System.in);15 System.out.println("Enter the degree of the polynomial");16 int degree=sc.nextInt();17 System.out.println("Enter the number of data pairs");18 int n=sc.nextInt();19 double[][] data=new double[n][2];20 System.out.println("Enter the data pairs");21 for(int i=0;i<n;i++)22 {23 for(int j=0;j<2;j++)24 {25 data[i][j]=sc.nextDouble();26 }27 }28 Polynomial p=new Polynomial(degree);29 p.CalculateCoefficients(data);30 System.out.println("The coefficients of the polynomial are");31 for(int i=0;i<=degree;i++)32 {33 System.out.print(p.coefficients[i]+" ");34 }35 System.out.println();36 System.out.println("Enter the value of x");37 double x=sc.nextDouble();38 System.out.println("The value of the polynomial at x is "+p.Evaluate(x));39 }40}41import java.util.*;42import java.io.*;43{44 int degree;45 double[] coefficients;46 Polynomial(int degree)47 {48 this.degree=degree;49 coefficients=new double[degree+1];50 }51 public void CalculateCoefficients(double[][] data)52 {53 int n=data.length;54 double[][] augmentedMatrix=new double[n][degree+2];55 for(int i=0;i<n;i++)56 {57 for(int j=0;j<=degree;j++)58 {59 augmentedMatrix[i][j]=Math.pow(data[i][0],j);60 }61 augmentedMatrix[i][degree+1]=data[i][1];62 }63 for(int i=0;i<n;i++)64 {65 double divisor=augmentedMatrix[i][i];66 for(int j=0;j<=degree+1;j++)67 {
Check out the latest blogs from LambdaTest on this topic:
I routinely come across test strategy documents when working with customers. They are lengthy—100 pages or more—and packed with monotonous text that is routinely reused from one project to another. Yawn once more— the test halt and resume circumstances, the defect management procedure, entrance and exit criteria, unnecessary generic risks, and in fact, one often-used model replicates the requirements of textbook testing, from stress to systems integration.
Enterprise resource planning (ERP) is a form of business process management software—typically a suite of integrated applications—that assists a company in managing its operations, interpreting data, and automating various back-office processes. The introduction of a new ERP system is analogous to the introduction of a new product into the market. If the product is not handled appropriately, it will fail, resulting in significant losses for the business. Most significantly, the employees’ time, effort, and morale would suffer as a result of the procedure.
Hola Testers! Hope you all had a great Thanksgiving weekend! To make this time more memorable, we at LambdaTest have something to offer you as a token of appreciation.
How do we acquire knowledge? This is one of the seemingly basic but critical questions you and your team members must ask and consider. We are experts; therefore, we understand why we study and what we should learn. However, many of us do not give enough thought to how we learn.
With the change in technology trends, there has been a drastic change in the way we build and develop applications. It is essential to simplify your programming requirements to achieve the desired outcomes in the long run. Visual Studio Code is regarded as one of the best IDEs for web development used by developers.
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!