How to use Get method of regression Package

Best Keploy code snippet using regression.Get

models.go

Source:models.go Github

copy

Full Screen

...42type gaussianKernel struct {43 mem unsafe.Pointer 44}45func (m *gaussianKernel) allocGaussianKernel(identifier string) {46 m.mem = C.mlpackGetGaussianKernelPtr(C.CString(identifier))47 runtime.KeepAlive(m)48}49func (m *gaussianKernel) getGaussianKernel(identifier string) {50 m.allocGaussianKernel(identifier)51}52func setGaussianKernel(identifier string, ptr *gaussianKernel) {53 C.mlpackSetGaussianKernelPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))54}55type adaBoostModel struct {56 mem unsafe.Pointer 57}58func (m *adaBoostModel) allocAdaBoostModel(identifier string) {59 m.mem = C.mlpackGetAdaBoostModelPtr(C.CString(identifier))60 runtime.KeepAlive(m)61}62func (m *adaBoostModel) getAdaBoostModel(identifier string) {63 m.allocAdaBoostModel(identifier)64}65func setAdaBoostModel(identifier string, ptr *adaBoostModel) {66 C.mlpackSetAdaBoostModelPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))67}68type approxkfnModel struct {69 mem unsafe.Pointer 70}71func (m *approxkfnModel) allocApproxKFNModel(identifier string) {72 m.mem = C.mlpackGetApproxKFNModelPtr(C.CString(identifier))73 runtime.KeepAlive(m)74}75func (m *approxkfnModel) getApproxKFNModel(identifier string) {76 m.allocApproxKFNModel(identifier)77}78func setApproxKFNModel(identifier string, ptr *approxkfnModel) {79 C.mlpackSetApproxKFNModelPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))80}81type bayesianLinearRegression struct {82 mem unsafe.Pointer 83}84func (m *bayesianLinearRegression) allocBayesianLinearRegression(identifier string) {85 m.mem = C.mlpackGetBayesianLinearRegressionPtr(C.CString(identifier))86 runtime.KeepAlive(m)87}88func (m *bayesianLinearRegression) getBayesianLinearRegression(identifier string) {89 m.allocBayesianLinearRegression(identifier)90}91func setBayesianLinearRegression(identifier string, ptr *bayesianLinearRegression) {92 C.mlpackSetBayesianLinearRegressionPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))93}94type cfModel struct {95 mem unsafe.Pointer 96}97func (m *cfModel) allocCFModel(identifier string) {98 m.mem = C.mlpackGetCFModelPtr(C.CString(identifier))99 runtime.KeepAlive(m)100}101func (m *cfModel) getCFModel(identifier string) {102 m.allocCFModel(identifier)103}104func setCFModel(identifier string, ptr *cfModel) {105 C.mlpackSetCFModelPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))106}107type dsModel struct {108 mem unsafe.Pointer 109}110func (m *dsModel) allocDSModel(identifier string) {111 m.mem = C.mlpackGetDSModelPtr(C.CString(identifier))112 runtime.KeepAlive(m)113}114func (m *dsModel) getDSModel(identifier string) {115 m.allocDSModel(identifier)116}117func setDSModel(identifier string, ptr *dsModel) {118 C.mlpackSetDSModelPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))119}120type decisionTreeModel struct {121 mem unsafe.Pointer 122}123func (m *decisionTreeModel) allocDecisionTreeModel(identifier string) {124 m.mem = C.mlpackGetDecisionTreeModelPtr(C.CString(identifier))125 runtime.KeepAlive(m)126}127func (m *decisionTreeModel) getDecisionTreeModel(identifier string) {128 m.allocDecisionTreeModel(identifier)129}130func setDecisionTreeModel(identifier string, ptr *decisionTreeModel) {131 C.mlpackSetDecisionTreeModelPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))132}133type dTree struct {134 mem unsafe.Pointer 135}136func (m *dTree) allocDTree(identifier string) {137 m.mem = C.mlpackGetDTreePtr(C.CString(identifier))138 runtime.KeepAlive(m)139}140func (m *dTree) getDTree(identifier string) {141 m.allocDTree(identifier)142}143func setDTree(identifier string, ptr *dTree) {144 C.mlpackSetDTreePtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))145}146type fastmksModel struct {147 mem unsafe.Pointer 148}149func (m *fastmksModel) allocFastMKSModel(identifier string) {150 m.mem = C.mlpackGetFastMKSModelPtr(C.CString(identifier))151 runtime.KeepAlive(m)152}153func (m *fastmksModel) getFastMKSModel(identifier string) {154 m.allocFastMKSModel(identifier)155}156func setFastMKSModel(identifier string, ptr *fastmksModel) {157 C.mlpackSetFastMKSModelPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))158}159type gmm struct {160 mem unsafe.Pointer 161}162func (m *gmm) allocGMM(identifier string) {163 m.mem = C.mlpackGetGMMPtr(C.CString(identifier))164 runtime.KeepAlive(m)165}166func (m *gmm) getGMM(identifier string) {167 m.allocGMM(identifier)168}169func setGMM(identifier string, ptr *gmm) {170 C.mlpackSetGMMPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))171}172type hmmModel struct {173 mem unsafe.Pointer 174}175func (m *hmmModel) allocHMMModel(identifier string) {176 m.mem = C.mlpackGetHMMModelPtr(C.CString(identifier))177 runtime.KeepAlive(m)178}179func (m *hmmModel) getHMMModel(identifier string) {180 m.allocHMMModel(identifier)181}182func setHMMModel(identifier string, ptr *hmmModel) {183 C.mlpackSetHMMModelPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))184}185type hoeffdingTreeModel struct {186 mem unsafe.Pointer 187}188func (m *hoeffdingTreeModel) allocHoeffdingTreeModel(identifier string) {189 m.mem = C.mlpackGetHoeffdingTreeModelPtr(C.CString(identifier))190 runtime.KeepAlive(m)191}192func (m *hoeffdingTreeModel) getHoeffdingTreeModel(identifier string) {193 m.allocHoeffdingTreeModel(identifier)194}195func setHoeffdingTreeModel(identifier string, ptr *hoeffdingTreeModel) {196 C.mlpackSetHoeffdingTreeModelPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))197}198type kdeModel struct {199 mem unsafe.Pointer 200}201func (m *kdeModel) allocKDEModel(identifier string) {202 m.mem = C.mlpackGetKDEModelPtr(C.CString(identifier))203 runtime.KeepAlive(m)204}205func (m *kdeModel) getKDEModel(identifier string) {206 m.allocKDEModel(identifier)207}208func setKDEModel(identifier string, ptr *kdeModel) {209 C.mlpackSetKDEModelPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))210}211type lars struct {212 mem unsafe.Pointer 213}214func (m *lars) allocLARS(identifier string) {215 m.mem = C.mlpackGetLARSPtr(C.CString(identifier))216 runtime.KeepAlive(m)217}218func (m *lars) getLARS(identifier string) {219 m.allocLARS(identifier)220}221func setLARS(identifier string, ptr *lars) {222 C.mlpackSetLARSPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))223}224type linearRegression struct {225 mem unsafe.Pointer 226}227func (m *linearRegression) allocLinearRegression(identifier string) {228 m.mem = C.mlpackGetLinearRegressionPtr(C.CString(identifier))229 runtime.KeepAlive(m)230}231func (m *linearRegression) getLinearRegression(identifier string) {232 m.allocLinearRegression(identifier)233}234func setLinearRegression(identifier string, ptr *linearRegression) {235 C.mlpackSetLinearRegressionPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))236}237type linearsvmModel struct {238 mem unsafe.Pointer 239}240func (m *linearsvmModel) allocLinearSVMModel(identifier string) {241 m.mem = C.mlpackGetLinearSVMModelPtr(C.CString(identifier))242 runtime.KeepAlive(m)243}244func (m *linearsvmModel) getLinearSVMModel(identifier string) {245 m.allocLinearSVMModel(identifier)246}247func setLinearSVMModel(identifier string, ptr *linearsvmModel) {248 C.mlpackSetLinearSVMModelPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))249}250type localCoordinateCoding struct {251 mem unsafe.Pointer 252}253func (m *localCoordinateCoding) allocLocalCoordinateCoding(identifier string) {254 m.mem = C.mlpackGetLocalCoordinateCodingPtr(C.CString(identifier))255 runtime.KeepAlive(m)256}257func (m *localCoordinateCoding) getLocalCoordinateCoding(identifier string) {258 m.allocLocalCoordinateCoding(identifier)259}260func setLocalCoordinateCoding(identifier string, ptr *localCoordinateCoding) {261 C.mlpackSetLocalCoordinateCodingPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))262}263type logisticRegression struct {264 mem unsafe.Pointer 265}266func (m *logisticRegression) allocLogisticRegression(identifier string) {267 m.mem = C.mlpackGetLogisticRegressionPtr(C.CString(identifier))268 runtime.KeepAlive(m)269}270func (m *logisticRegression) getLogisticRegression(identifier string) {271 m.allocLogisticRegression(identifier)272}273func setLogisticRegression(identifier string, ptr *logisticRegression) {274 C.mlpackSetLogisticRegressionPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))275}276type lshSearch struct {277 mem unsafe.Pointer 278}279func (m *lshSearch) allocLSHSearch(identifier string) {280 m.mem = C.mlpackGetLSHSearchPtr(C.CString(identifier))281 runtime.KeepAlive(m)282}283func (m *lshSearch) getLSHSearch(identifier string) {284 m.allocLSHSearch(identifier)285}286func setLSHSearch(identifier string, ptr *lshSearch) {287 C.mlpackSetLSHSearchPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))288}289type nbcModel struct {290 mem unsafe.Pointer 291}292func (m *nbcModel) allocNBCModel(identifier string) {293 m.mem = C.mlpackGetNBCModelPtr(C.CString(identifier))294 runtime.KeepAlive(m)295}296func (m *nbcModel) getNBCModel(identifier string) {297 m.allocNBCModel(identifier)298}299func setNBCModel(identifier string, ptr *nbcModel) {300 C.mlpackSetNBCModelPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))301}302type knnModel struct {303 mem unsafe.Pointer 304}305func (m *knnModel) allocKNNModel(identifier string) {306 m.mem = C.mlpackGetKNNModelPtr(C.CString(identifier))307 runtime.KeepAlive(m)308}309func (m *knnModel) getKNNModel(identifier string) {310 m.allocKNNModel(identifier)311}312func setKNNModel(identifier string, ptr *knnModel) {313 C.mlpackSetKNNModelPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))314}315type kfnModel struct {316 mem unsafe.Pointer 317}318func (m *kfnModel) allocKFNModel(identifier string) {319 m.mem = C.mlpackGetKFNModelPtr(C.CString(identifier))320 runtime.KeepAlive(m)321}322func (m *kfnModel) getKFNModel(identifier string) {323 m.allocKFNModel(identifier)324}325func setKFNModel(identifier string, ptr *kfnModel) {326 C.mlpackSetKFNModelPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))327}328type perceptronModel struct {329 mem unsafe.Pointer 330}331func (m *perceptronModel) allocPerceptronModel(identifier string) {332 m.mem = C.mlpackGetPerceptronModelPtr(C.CString(identifier))333 runtime.KeepAlive(m)334}335func (m *perceptronModel) getPerceptronModel(identifier string) {336 m.allocPerceptronModel(identifier)337}338func setPerceptronModel(identifier string, ptr *perceptronModel) {339 C.mlpackSetPerceptronModelPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))340}341type scalingModel struct {342 mem unsafe.Pointer 343}344func (m *scalingModel) allocScalingModel(identifier string) {345 m.mem = C.mlpackGetScalingModelPtr(C.CString(identifier))346 runtime.KeepAlive(m)347}348func (m *scalingModel) getScalingModel(identifier string) {349 m.allocScalingModel(identifier)350}351func setScalingModel(identifier string, ptr *scalingModel) {352 C.mlpackSetScalingModelPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))353}354type randomForestModel struct {355 mem unsafe.Pointer 356}357func (m *randomForestModel) allocRandomForestModel(identifier string) {358 m.mem = C.mlpackGetRandomForestModelPtr(C.CString(identifier))359 runtime.KeepAlive(m)360}361func (m *randomForestModel) getRandomForestModel(identifier string) {362 m.allocRandomForestModel(identifier)363}364func setRandomForestModel(identifier string, ptr *randomForestModel) {365 C.mlpackSetRandomForestModelPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))366}367type rannModel struct {368 mem unsafe.Pointer 369}370func (m *rannModel) allocRANNModel(identifier string) {371 m.mem = C.mlpackGetRANNModelPtr(C.CString(identifier))372 runtime.KeepAlive(m)373}374func (m *rannModel) getRANNModel(identifier string) {375 m.allocRANNModel(identifier)376}377func setRANNModel(identifier string, ptr *rannModel) {378 C.mlpackSetRANNModelPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))379}380type softmaxRegression struct {381 mem unsafe.Pointer 382}383func (m *softmaxRegression) allocSoftmaxRegression(identifier string) {384 m.mem = C.mlpackGetSoftmaxRegressionPtr(C.CString(identifier))385 runtime.KeepAlive(m)386}387func (m *softmaxRegression) getSoftmaxRegression(identifier string) {388 m.allocSoftmaxRegression(identifier)389}390func setSoftmaxRegression(identifier string, ptr *softmaxRegression) {391 C.mlpackSetSoftmaxRegressionPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))392}393type sparseCoding struct {394 mem unsafe.Pointer 395}396func (m *sparseCoding) allocSparseCoding(identifier string) {397 m.mem = C.mlpackGetSparseCodingPtr(C.CString(identifier))398 runtime.KeepAlive(m)399}400func (m *sparseCoding) getSparseCoding(identifier string) {401 m.allocSparseCoding(identifier)402}403func setSparseCoding(identifier string, ptr *sparseCoding) {404 C.mlpackSetSparseCodingPtr(C.CString(identifier), (unsafe.Pointer)(ptr.mem))405}...

Full Screen

Full Screen

linear_regression_series.go

Source:linear_regression_series.go Github

copy

Full Screen

...33 stdev = lrs.stddevx34 avg = lrs.avgx35 return36}37// GetName returns the name of the time series.38func (lrs LinearRegressionSeries) GetName() string {39 return lrs.Name40}41// GetStyle returns the line style.42func (lrs LinearRegressionSeries) GetStyle() Style {43 return lrs.Style44}45// GetYAxis returns which YAxis the series draws on.46func (lrs LinearRegressionSeries) GetYAxis() YAxisType {47 return lrs.YAxis48}49// Len returns the number of elements in the series.50func (lrs LinearRegressionSeries) Len() int {51 return MinInt(lrs.GetLimit(), lrs.InnerSeries.Len()-lrs.GetOffset())52}53// GetLimit returns the window size.54func (lrs LinearRegressionSeries) GetLimit() int {55 if lrs.Limit == 0 {56 return lrs.InnerSeries.Len()57 }58 return lrs.Limit59}60// GetEndIndex returns the effective limit end.61func (lrs LinearRegressionSeries) GetEndIndex() int {62 windowEnd := lrs.GetOffset() + lrs.GetLimit()63 innerSeriesLastIndex := lrs.InnerSeries.Len() - 164 return MinInt(windowEnd, innerSeriesLastIndex)65}66// GetOffset returns the data offset.67func (lrs LinearRegressionSeries) GetOffset() int {68 if lrs.Offset == 0 {69 return 070 }71 return lrs.Offset72}73// GetValues gets a value at a given index.74func (lrs *LinearRegressionSeries) GetValues(index int) (x, y float64) {75 if lrs.InnerSeries == nil || lrs.InnerSeries.Len() == 0 {76 return77 }78 if lrs.IsZero() {79 lrs.computeCoefficients()80 }81 offset := lrs.GetOffset()82 effectiveIndex := MinInt(index+offset, lrs.InnerSeries.Len())83 x, y = lrs.InnerSeries.GetValues(effectiveIndex)84 y = (lrs.m * lrs.normalize(x)) + lrs.b85 return86}87// GetFirstValues computes the first linear regression value.88func (lrs *LinearRegressionSeries) GetFirstValues() (x, y float64) {89 if lrs.InnerSeries == nil || lrs.InnerSeries.Len() == 0 {90 return91 }92 if lrs.IsZero() {93 lrs.computeCoefficients()94 }95 x, y = lrs.InnerSeries.GetValues(0)96 y = (lrs.m * lrs.normalize(x)) + lrs.b97 return98}99// GetLastValues computes the last linear regression value.100func (lrs *LinearRegressionSeries) GetLastValues() (x, y float64) {101 if lrs.InnerSeries == nil || lrs.InnerSeries.Len() == 0 {102 return103 }104 if lrs.IsZero() {105 lrs.computeCoefficients()106 }107 endIndex := lrs.GetEndIndex()108 x, y = lrs.InnerSeries.GetValues(endIndex)109 y = (lrs.m * lrs.normalize(x)) + lrs.b110 return111}112// Render renders the series.113func (lrs *LinearRegressionSeries) Render(r Renderer, canvasBox Box, xrange, yrange Range, defaults Style) {114 style := lrs.Style.InheritFrom(defaults)115 Draw.LineSeries(r, canvasBox, xrange, yrange, style, lrs)116}117// Validate validates the series.118func (lrs *LinearRegressionSeries) Validate() error {119 if lrs.InnerSeries == nil {120 return fmt.Errorf("linear regression series requires InnerSeries to be set")121 }122 return nil123}124// IsZero returns if we've computed the coefficients or not.125func (lrs *LinearRegressionSeries) IsZero() bool {126 return lrs.m == 0 && lrs.b == 0127}128//129// internal helpers130//131func (lrs *LinearRegressionSeries) normalize(xvalue float64) float64 {132 return (xvalue - lrs.avgx) / lrs.stddevx133}134// computeCoefficients computes the `m` and `b` terms in the linear formula given by `y = mx+b`.135func (lrs *LinearRegressionSeries) computeCoefficients() {136 startIndex := lrs.GetOffset()137 endIndex := lrs.GetEndIndex()138 p := float64(endIndex - startIndex)139 xvalues := NewValueBufferWithCapacity(lrs.Len())140 for index := startIndex; index < endIndex; index++ {141 x, _ := lrs.InnerSeries.GetValues(index)142 xvalues.Enqueue(x)143 }144 lrs.avgx = Seq{xvalues}.Average()145 lrs.stddevx = Seq{xvalues}.StdDev()146 var sumx, sumy, sumxx, sumxy float64147 for index := startIndex; index < endIndex; index++ {148 x, y := lrs.InnerSeries.GetValues(index)149 x = lrs.normalize(x)150 sumx += x151 sumy += y152 sumxx += x * x153 sumxy += x * y154 }155 lrs.m = (p*sumxy - sumx*sumy) / (p*sumxx - sumx*sumx)156 lrs.b = (sumy / p) - (lrs.m * sumx / p)157}...

Full Screen

Full Screen

polynomial_regression_series.go

Source:polynomial_regression_series.go Github

copy

Full Screen

...21 Degree int22 InnerSeries ValuesProvider23 coeffs []float6424}25// GetName returns the name of the time series.26func (prs PolynomialRegressionSeries) GetName() string {27 return prs.Name28}29// GetStyle returns the line style.30func (prs PolynomialRegressionSeries) GetStyle() Style {31 return prs.Style32}33// GetYAxis returns which YAxis the series draws on.34func (prs PolynomialRegressionSeries) GetYAxis() YAxisType {35 return prs.YAxis36}37// Len returns the number of elements in the series.38func (prs PolynomialRegressionSeries) Len() int {39 return MinInt(prs.GetLimit(), prs.InnerSeries.Len()-prs.GetOffset())40}41// GetLimit returns the window size.42func (prs PolynomialRegressionSeries) GetLimit() int {43 if prs.Limit == 0 {44 return prs.InnerSeries.Len()45 }46 return prs.Limit47}48// GetEndIndex returns the effective limit end.49func (prs PolynomialRegressionSeries) GetEndIndex() int {50 windowEnd := prs.GetOffset() + prs.GetLimit()51 innerSeriesLastIndex := prs.InnerSeries.Len() - 152 return MinInt(windowEnd, innerSeriesLastIndex)53}54// GetOffset returns the data offset.55func (prs PolynomialRegressionSeries) GetOffset() int {56 if prs.Offset == 0 {57 return 058 }59 return prs.Offset60}61// Validate validates the series.62func (prs *PolynomialRegressionSeries) Validate() error {63 if prs.InnerSeries == nil {64 return fmt.Errorf("linear regression series requires InnerSeries to be set")65 }66 endIndex := prs.GetEndIndex()67 if endIndex >= prs.InnerSeries.Len() {68 return fmt.Errorf("invalid window; inner series has length %d but end index is %d", prs.InnerSeries.Len(), endIndex)69 }70 return nil71}72// GetValues returns the series value for a given index.73func (prs *PolynomialRegressionSeries) GetValues(index int) (x, y float64) {74 if prs.InnerSeries == nil || prs.InnerSeries.Len() == 0 {75 return76 }77 if prs.coeffs == nil {78 coeffs, err := prs.computeCoefficients()79 if err != nil {80 panic(err)81 }82 prs.coeffs = coeffs83 }84 offset := prs.GetOffset()85 effectiveIndex := MinInt(index+offset, prs.InnerSeries.Len())86 x, y = prs.InnerSeries.GetValues(effectiveIndex)87 y = prs.apply(x)88 return89}90// GetFirstValues computes the first poly regression value.91func (prs *PolynomialRegressionSeries) GetFirstValues() (x, y float64) {92 if prs.InnerSeries == nil || prs.InnerSeries.Len() == 0 {93 return94 }95 if prs.coeffs == nil {96 coeffs, err := prs.computeCoefficients()97 if err != nil {98 panic(err)99 }100 prs.coeffs = coeffs101 }102 x, y = prs.InnerSeries.GetValues(0)103 y = prs.apply(x)104 return105}106// GetLastValues computes the last poly regression value.107func (prs *PolynomialRegressionSeries) GetLastValues() (x, y float64) {108 if prs.InnerSeries == nil || prs.InnerSeries.Len() == 0 {109 return110 }111 if prs.coeffs == nil {112 coeffs, err := prs.computeCoefficients()113 if err != nil {114 panic(err)115 }116 prs.coeffs = coeffs117 }118 endIndex := prs.GetEndIndex()119 x, y = prs.InnerSeries.GetValues(endIndex)120 y = prs.apply(x)121 return122}123func (prs *PolynomialRegressionSeries) apply(v float64) (out float64) {124 for index, coeff := range prs.coeffs {125 out = out + (coeff * math.Pow(v, float64(index)))126 }127 return128}129func (prs *PolynomialRegressionSeries) computeCoefficients() ([]float64, error) {130 xvalues, yvalues := prs.values()131 return matrix.Poly(xvalues, yvalues, prs.Degree)132}133func (prs *PolynomialRegressionSeries) values() (xvalues, yvalues []float64) {134 startIndex := prs.GetOffset()135 endIndex := prs.GetEndIndex()136 xvalues = make([]float64, endIndex-startIndex)137 yvalues = make([]float64, endIndex-startIndex)138 for index := startIndex; index < endIndex; index++ {139 x, y := prs.InnerSeries.GetValues(index)140 xvalues[index-startIndex] = x141 yvalues[index-startIndex] = y142 }143 return144}145// Render renders the series.146func (prs *PolynomialRegressionSeries) Render(r Renderer, canvasBox Box, xrange, yrange Range, defaults Style) {147 style := prs.Style.InheritFrom(defaults)148 Draw.LineSeries(r, canvasBox, xrange, yrange, style, prs)149}...

Full Screen

Full Screen

Get

Using AI Code Generation

copy

Full Screen

1import (2func main() {3 r.SetObserved("Y")4 r.SetVar(0, "X")5 r.Train(6 regression.DataPoint(2.71, []float64{1}),7 regression.DataPoint(4.21, []float64{2}),8 regression.DataPoint(5.71, []float64{3}),9 regression.DataPoint(8.21, []float64{4}),10 regression.DataPoint(8.71, []float64{5}),11 r.Run()12 fmt.Printf("\nRegression Formula:\n%v\n", r.Formula)13 fmt.Printf("\nR2: %v\n", r.R2)14 fmt.Printf("\nIntercept: %v\n", r.Coeff(0))15 fmt.Printf("\nCoefficient: %v\n", r.Coeff(1))16 fmt.Printf("\nGet: %v\n", r.Get(0))17}18import (19func main() {20 r.SetObserved("Y")21 r.SetVar(0, "X")22 r.Train(23 regression.DataPoint(2.71, []float64{1}),24 regression.DataPoint(4.21, []float64{2}),25 regression.DataPoint(5.71, []float64{3}),26 regression.DataPoint(8.21, []float64{4}),27 regression.DataPoint(8.71, []float64{5}),28 r.Run()29 fmt.Printf("\nRegression Formula:\n%v\n", r.Formula)30 fmt.Printf("\nR2: %v\n", r.R2)31 fmt.Printf("\nIntercept: %v\n", r.Coeff(0))32 fmt.Printf("\nCoefficient: %v\n", r.Coeff(1))33 fmt.Printf("\nPredict: %v\n", r.Predict([]float64{6}))34}

Full Screen

Full Screen

Get

Using AI Code Generation

copy

Full Screen

1import (2func main() {3 r := new(regression.Regression)4 r.SetObserved("Y")5 r.SetVar(0, "X")6 r.Train(7 regression.DataPoint(2.0, []float64{1.0}),8 regression.DataPoint(4.0, []float64{2.0}),9 regression.DataPoint(6.0, []float64{3.0}),10 regression.DataPoint(8.0, []float64{4.0}),11 r.Run()12 fmt.Printf("Regression formula: %v13 fmt.Printf("Regression prediction: %v14", r.Get(5.0))15}

Full Screen

Full Screen

Get

Using AI Code Generation

copy

Full Screen

1import (2func main() {3 r.SetObserved("Y")4 r.SetVar(0, "X")5 r.Train(regression.Data{6 X: []float64{1, 2, 3, 4},7 Y: []float64{2, 4, 6, 8},8 })9 r.Train(regression.Data{10 X: []float64{2, 3, 4, 5},11 Y: []float64{3, 5, 7, 9},12 })13 r.Train(regression.Data{14 X: []float64{3, 4, 5, 6},15 Y: []float64{4, 6, 8, 10},16 })17 fmt.Printf("\nRegression formula:\n%v\n", r.Formula)18 fmt.Printf("\nRegression prediction:\n%v\n", r.Get(5.0))19}

Full Screen

Full Screen

Get

Using AI Code Generation

copy

Full Screen

1import (2func main() {3 r.Train(regression.DataPoint(1, []float64{1}, 1))4 r.Train(regression.DataPoint(1, []float64{2}, 2))5 r.Train(regression.DataPoint(1, []float64{3}, 3))6 r.Train(regression.DataPoint(1, []float64{4}, 4))7 r.Train(regression.DataPoint(1, []float64{5}, 5))8 r.Run()9 fmt.Printf("\nRegression formula: %v\n", r.Formula)10 fmt.Printf("Predict x = 5, y = %0.2f\n", r.Predict([]float64{5}))11}

Full Screen

Full Screen

Get

Using AI Code Generation

copy

Full Screen

1import (2func main() {3 r.SetObserved("Y")4 r.SetVar(0, "X")5 r.Train(regression.Data{6 {X: []float64{1}, Y: 2},7 {X: []float64{2}, Y: 4},8 {X: []float64{3}, Y: 6},9 {X: []float64{4}, Y: 8},10 })11 r.Run()12 fmt.Printf("Regression formula: %v13 fmt.Printf("Regression:\n%v14 fmt.Printf("Predicted value for 5: %v15", r.Predict([]float64{5}))16}

Full Screen

Full Screen

Get

Using AI Code Generation

copy

Full Screen

1import (2func main() {3 r.SetObserved("y")4 r.SetVar(0, "x")5 r.Train(6 regression.DataPoint(2.71, []float64{1}),7 regression.DataPoint(3.14, []float64{2}),8 regression.DataPoint(1.41, []float64{3}),9 regression.DataPoint(1.61, []float64{4}),10 r.Run()11 fmt.Printf("Regression Formula: \n%v\n", r.Formula)12 fmt.Printf("Predicted value for x = 5: %0.2f\n", r.Get(5))13}

Full Screen

Full Screen

Get

Using AI Code Generation

copy

Full Screen

1import (2func main() {3 r.SetObserved("y")4 r.SetVar(0, "x")5 r.Train(6 regression.Data{7 X: []float64{1, 2, 3, 4, 5},8 Y: []float64{2, 4, 6, 8, 10},9 },10 r.Train(11 regression.Data{12 X: []float64{6, 7, 8, 9, 10},13 Y: []float64{12, 14, 16, 18, 20},14 },15 fmt.Printf("\nRegression Formula:\n%v\n", r.Formula)16 fmt.Printf("\nR2: %v\n", r.R2)17}

Full Screen

Full Screen

Get

Using AI Code Generation

copy

Full Screen

1import "fmt"2import "github.com/sajari/regression"3func main() {4r.SetObserved("Y")5r.SetVar(0, "X")6r.Train(7regression.DataPoint(2.4, []float64{1}),8regression.DataPoint(0.5, []float64{2}),9regression.DataPoint(2.2, []float64{3}),10regression.DataPoint(1.9, []float64{4}),11regression.DataPoint(3.1, []float64{5}),12r.Run()13fmt.Printf("Regression formula:\n%v\n", r.Formula)14fmt.Printf("Predicted Y for X = 4.5: %v\n", r.Get([]float64{4.5}))15}

Full Screen

Full Screen

Get

Using AI Code Generation

copy

Full Screen

1import (2func main() {3 rand.Seed(time.Now().UnixNano())4 x := []float64{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}5 y := []float64{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}6 x1 := []float64{11, 12, 13, 14, 15, 16, 17, 18, 19, 20}7 y1 := []float64{11, 12, 13, 14, 15, 16, 17, 18, 19, 20}8 reg := regression.New(x, y)9 reg.Test(x1, y1)10 reg.Fit()11 m, c := reg.Get()12 fmt.Println("m:", m, "c:", c)13 y2 := reg.Predict(x1)14 fmt.Println("y2:", y2)15 for i := 0; i < len(y1); i++ {16 sum += math.Pow(y1[i]-y2[i], 2)17 }18 fmt.Println("Sum:", sum)19}

Full Screen

Full Screen

Get

Using AI Code Generation

copy

Full Screen

1import (2func main() {3 x := []float64{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}4 y := []float64{2.2, 4.4, 6.6, 8.8, 11, 13.2, 15.4, 17.6, 19.8, 22}5 reg.SetObserved(x, y)6 reg.Regress()7 a, b := reg.Coefficients()8 x = []float64{11, 12, 13, 14, 15}9 y = reg.Predict(x)10 r2 := reg.R2()11 fmt.Println("a:", a)12 fmt.Println("b:", b)13 fmt.Println("y:", y)14 fmt.Println("R^2:", r2)15 a, b, r2 = stat.LinearRegression(x, y, nil, false)16 fmt.Println("a:", a)17 fmt.Println("b:", b)18 fmt.Println("R^2:", r2)19}

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run Keploy automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful