Best Keploy code snippet using regression.End
linear_regression_series.go
Source: linear_regression_series.go
...56 return lrs.InnerSeries.Len()57 }58 return lrs.Limit59}60// GetEndIndex returns the effective limit end.61func (lrs LinearRegressionSeries) GetEndIndex() int {62 windowEnd := lrs.GetOffset() + lrs.GetLimit()63 innerSeriesLastIndex := lrs.InnerSeries.Len() - 164 return MinInt(windowEnd, innerSeriesLastIndex)65}66// GetOffset returns the data offset.67func (lrs LinearRegressionSeries) GetOffset() int {68 if lrs.Offset == 0 {69 return 070 }71 return lrs.Offset72}73// GetValues gets a value at a given index.74func (lrs *LinearRegressionSeries) GetValues(index int) (x, y float64) {75 if lrs.InnerSeries == nil || lrs.InnerSeries.Len() == 0 {76 return77 }78 if lrs.IsZero() {79 lrs.computeCoefficients()80 }81 offset := lrs.GetOffset()82 effectiveIndex := MinInt(index+offset, lrs.InnerSeries.Len())83 x, y = lrs.InnerSeries.GetValues(effectiveIndex)84 y = (lrs.m * lrs.normalize(x)) + lrs.b85 return86}87// GetFirstValues computes the first linear regression value.88func (lrs *LinearRegressionSeries) GetFirstValues() (x, y float64) {89 if lrs.InnerSeries == nil || lrs.InnerSeries.Len() == 0 {90 return91 }92 if lrs.IsZero() {93 lrs.computeCoefficients()94 }95 x, y = lrs.InnerSeries.GetValues(0)96 y = (lrs.m * lrs.normalize(x)) + lrs.b97 return98}99// GetLastValues computes the last linear regression value.100func (lrs *LinearRegressionSeries) GetLastValues() (x, y float64) {101 if lrs.InnerSeries == nil || lrs.InnerSeries.Len() == 0 {102 return103 }104 if lrs.IsZero() {105 lrs.computeCoefficients()106 }107 endIndex := lrs.GetEndIndex()108 x, y = lrs.InnerSeries.GetValues(endIndex)109 y = (lrs.m * lrs.normalize(x)) + lrs.b110 return111}112// Render renders the series.113func (lrs *LinearRegressionSeries) Render(r Renderer, canvasBox Box, xrange, yrange Range, defaults Style) {114 style := lrs.Style.InheritFrom(defaults)115 Draw.LineSeries(r, canvasBox, xrange, yrange, style, lrs)116}117// Validate validates the series.118func (lrs *LinearRegressionSeries) Validate() error {119 if lrs.InnerSeries == nil {120 return fmt.Errorf("linear regression series requires InnerSeries to be set")121 }122 return nil123}124// IsZero returns if we've computed the coefficients or not.125func (lrs *LinearRegressionSeries) IsZero() bool {126 return lrs.m == 0 && lrs.b == 0127}128//129// internal helpers130//131func (lrs *LinearRegressionSeries) normalize(xvalue float64) float64 {132 return (xvalue - lrs.avgx) / lrs.stddevx133}134// computeCoefficients computes the `m` and `b` terms in the linear formula given by `y = mx+b`.135func (lrs *LinearRegressionSeries) computeCoefficients() {136 startIndex := lrs.GetOffset()137 endIndex := lrs.GetEndIndex()138 p := float64(endIndex - startIndex)139 xvalues := NewValueBufferWithCapacity(lrs.Len())140 for index := startIndex; index < endIndex; index++ {141 x, _ := lrs.InnerSeries.GetValues(index)142 xvalues.Enqueue(x)143 }144 lrs.avgx = Seq{xvalues}.Average()145 lrs.stddevx = Seq{xvalues}.StdDev()146 var sumx, sumy, sumxx, sumxy float64147 for index := startIndex; index < endIndex; index++ {148 x, y := lrs.InnerSeries.GetValues(index)149 x = lrs.normalize(x)150 sumx += x151 sumy += y...
polynomial_regression_series.go
Source: polynomial_regression_series.go
...44 return prs.InnerSeries.Len()45 }46 return prs.Limit47}48// GetEndIndex returns the effective limit end.49func (prs PolynomialRegressionSeries) GetEndIndex() int {50 windowEnd := prs.GetOffset() + prs.GetLimit()51 innerSeriesLastIndex := prs.InnerSeries.Len() - 152 return MinInt(windowEnd, innerSeriesLastIndex)53}54// GetOffset returns the data offset.55func (prs PolynomialRegressionSeries) GetOffset() int {56 if prs.Offset == 0 {57 return 058 }59 return prs.Offset60}61// Validate validates the series.62func (prs *PolynomialRegressionSeries) Validate() error {63 if prs.InnerSeries == nil {64 return fmt.Errorf("linear regression series requires InnerSeries to be set")65 }66 endIndex := prs.GetEndIndex()67 if endIndex >= prs.InnerSeries.Len() {68 return fmt.Errorf("invalid window; inner series has length %d but end index is %d", prs.InnerSeries.Len(), endIndex)69 }70 return nil71}72// GetValues returns the series value for a given index.73func (prs *PolynomialRegressionSeries) GetValues(index int) (x, y float64) {74 if prs.InnerSeries == nil || prs.InnerSeries.Len() == 0 {75 return76 }77 if prs.coeffs == nil {78 coeffs, err := prs.computeCoefficients()79 if err != nil {80 panic(err)81 }82 prs.coeffs = coeffs83 }84 offset := prs.GetOffset()85 effectiveIndex := MinInt(index+offset, prs.InnerSeries.Len())86 x, y = prs.InnerSeries.GetValues(effectiveIndex)87 y = prs.apply(x)88 return89}90// GetFirstValues computes the first poly regression value.91func (prs *PolynomialRegressionSeries) GetFirstValues() (x, y float64) {92 if prs.InnerSeries == nil || prs.InnerSeries.Len() == 0 {93 return94 }95 if prs.coeffs == nil {96 coeffs, err := prs.computeCoefficients()97 if err != nil {98 panic(err)99 }100 prs.coeffs = coeffs101 }102 x, y = prs.InnerSeries.GetValues(0)103 y = prs.apply(x)104 return105}106// GetLastValues computes the last poly regression value.107func (prs *PolynomialRegressionSeries) GetLastValues() (x, y float64) {108 if prs.InnerSeries == nil || prs.InnerSeries.Len() == 0 {109 return110 }111 if prs.coeffs == nil {112 coeffs, err := prs.computeCoefficients()113 if err != nil {114 panic(err)115 }116 prs.coeffs = coeffs117 }118 endIndex := prs.GetEndIndex()119 x, y = prs.InnerSeries.GetValues(endIndex)120 y = prs.apply(x)121 return122}123func (prs *PolynomialRegressionSeries) apply(v float64) (out float64) {124 for index, coeff := range prs.coeffs {125 out = out + (coeff * math.Pow(v, float64(index)))126 }127 return128}129func (prs *PolynomialRegressionSeries) computeCoefficients() ([]float64, error) {130 xvalues, yvalues := prs.values()131 return matrix.Poly(xvalues, yvalues, prs.Degree)132}133func (prs *PolynomialRegressionSeries) values() (xvalues, yvalues []float64) {134 startIndex := prs.GetOffset()135 endIndex := prs.GetEndIndex()136 xvalues = make([]float64, endIndex-startIndex)137 yvalues = make([]float64, endIndex-startIndex)138 for index := startIndex; index < endIndex; index++ {139 x, y := prs.InnerSeries.GetValues(index)140 xvalues[index-startIndex] = x141 yvalues[index-startIndex] = y142 }143 return144}145// Render renders the series.146func (prs *PolynomialRegressionSeries) Render(r Renderer, canvasBox Box, xrange, yrange Range, defaults Style) {147 style := prs.Style.InheritFrom(defaults)148 Draw.LineSeries(r, canvasBox, xrange, yrange, style, prs)149}...
regression_test.go
Source: regression_test.go
...28 {1, 1},29 },30 regression: &Regression{31 Start: 0,32 End: 1,33 Intercept: 0,34 Gradient: 1,35 Width: 0,36 },37 },38 "two negative samples": {39 input: []Sample{40 {-1, -1},41 {0, 0},42 },43 regression: &Regression{44 Start: -1,45 End: 0,46 Intercept: 0,47 Gradient: 1,48 Width: 0,49 },50 },51 "lower gradient line": {52 input: []Sample{53 {1, 1},54 {3, 2},55 {5, 3},56 },57 regression: &Regression{58 Start: 1,59 End: 5,60 Intercept: 0.5,61 Gradient: 0.5,62 Width: 0,63 },64 },65 "non-zero width line": {66 input: []Sample{67 {1, 2},68 {2, 1},69 {2, 3},70 {3, 2},71 {3, 4},72 {4, 3},73 },74 regression: &Regression{75 Start: 1,76 End: 4,77 Intercept: 1.363,78 Gradient: 0.454,79 Width: 1.142,80 },81 },82 }83 for name, tc := range tests {84 t.Run(name, func(t *testing.T) {85 regressionBuffer := RegressionBuffer{}86 for _, s := range tc.input {87 regressionBuffer.Add(s)88 }89 regression, err := regressionBuffer.Regression()90 if tc.err != "" && err == nil {91 t.Fatalf("expected error: %v, got no error", tc.err)92 }93 if tc.err != "" && tc.err != err.Error() {94 t.Fatalf("expected error: %v, got: %v", tc.err, err.Error())95 }96 if tc.regression != nil {97 if tc.regression.Start != regression.Start {98 t.Fatalf("expected Start: %v, got: %v", tc.regression.Start, regression.Start)99 }100 if tc.regression.End != regression.End {101 t.Fatalf("expected End: %v, got: %v", tc.regression.End, regression.End)102 }103 if !float64Equals(tc.regression.Intercept, regression.Intercept) {104 t.Fatalf("expected Intercept: %v, got: %v", tc.regression.Intercept, regression.Intercept)105 }106 if !float64Equals(tc.regression.Gradient, regression.Gradient) {107 t.Fatalf("expected Gradient: %v, got: %v", tc.regression.Gradient, regression.Gradient)108 }109 if !float64Equals(tc.regression.Width, regression.Width) {110 t.Fatalf("expected Width: %v, got: %v", tc.regression.Width, regression.Width)111 }112 }113 })114 }115}...
End
Using AI Code Generation
1import (2func main() {3 r := new(regression.Regression)4 r.Train(regression.Data{5 X: []float64{1, 2, 3},6 Y: []float64{1, 2, 3},7 })8 r.End()9 fmt.Println(r.Coeff(0), r.Coeff(1))10}
End
Using AI Code Generation
1import (2func main() {3 x := []float64{0.5, 1, 1.5, 2, 2.5}4 y := []float64{0.5, 1, 1.5, 2, 2.5}5 r := stat.LinearRegression(x, y, nil, false)6 fmt.Println(r.End())7}
End
Using AI Code Generation
1import (2func main() {3 r.SetObserved("Y")4 r.SetVar(0, "X")5 r.Train(regression.DataPoint(1, []float64{1}, []float64{1}))6 r.Train(regression.DataPoint(2, []float64{2}, []float64{2}))7 r.Train(regression.DataPoint(3, []float64{3}, []float64{3}))8 r.Train(regression.DataPoint(4, []float64{4}, []float64{4}))9 r.Train(regression.DataPoint(5, []float64{5}, []float64{5}))10 r.Run()11 fmt.Printf("\nRegression Formula:\n%v\n", r.Formula)12 fmt.Printf("\nR²: %v\n", r.R2)13 fmt.Printf("\nX=1, Y=%v\n", r.Predict([]float64{1}))14 fmt.Printf("\nX=2, Y=%v\n", r.Predict([]float64{2}))15 fmt.Printf("\nX=3, Y=%v\n", r.Predict([]float64{3}))16 fmt.Printf("\nX=4, Y=%v\n", r.Predict([]float64{4}))17 fmt.Printf("\nX=5, Y=%v\n", r.Predict([]float64{5}))18}
End
Using AI Code Generation
1import (2func main() {3 r.SetObserved("Y")4 r.SetVar(0, "X")5 rand.Seed(time.Now().UnixNano())6 for x := 0.0; x < 10.0; x++ {7 y := 5.0*x + 10.0 + rand.Float64()*5.08 r.Train(regression.DataPoint(y, []float64{x}))9 }10 r.Run()11 fmt.Printf("\nformula for Y:\n%v\n", r.Formula)12}
End
Using AI Code Generation
1import (2func main() {3 r := new(regression.Regression)4 r.SetObserved("Y")5 r.SetVar(0, "X")6 r.AddDataPoint(0, 0, 0.0)7 r.AddDataPoint(1, 1, 1.0)8 r.AddDataPoint(2, 2, 2.0)9 r.AddDataPoint(3, 3, 3.0)10 r.AddDataPoint(4, 4, 4.0)11 r.AddDataPoint(5, 5, 5.0)12 r.AddDataPoint(6, 6, 6.0)13 r.AddDataPoint(7, 7, 7.0)14 r.AddDataPoint(8, 8, 8.0)15 r.AddDataPoint(9, 9, 9.0)16 r.Run()
End
Using AI Code Generation
1import (2func main() {3 g4 := gsd.ParseToGraph("testgraph.gsd")4 fmt.Println("Graph:")5 fmt.Println(g4)6 fmt.Println()7 reg := regression.Regression{}8 reg.SetGraph(g4)9 reg.SetSource("A")10 reg.SetTarget("D")11 reg.SetWeight("weight")12 fmt.Println("Regression:")13 fmt.Println(reg)14 fmt.Println()15 fmt.Println("Regression Path:")16 fmt.Println(reg.End())17 fmt.Println()18 reg.SetTarget("E")19 fmt.Println("Regression Path:")20 fmt.Println(reg.End())21 fmt.Println()22 reg.SetTarget("F")23 fmt.Println("Regression Path:")24 fmt.Println(reg.End())25 fmt.Println()26 reg.SetTarget("G")27 fmt.Println("Regression Path:")28 fmt.Println(reg.End())29 fmt.Println()30 reg.SetTarget("H")31 fmt.Println("Regression Path:")32 fmt.Println(reg.End())33 fmt.Println()34 reg.SetTarget("I")35 fmt.Println("Regression Path:")36 fmt.Println(reg.End())37 fmt.Println()38 reg.SetTarget("J")39 fmt.Println("Regression Path:")40 fmt.Println(reg.End())41 fmt.Println()42 reg.SetTarget("K")43 fmt.Println("Regression Path:")44 fmt.Println(reg.End())45 fmt.Println()46 reg.SetTarget("L")47 fmt.Println("Regression Path:")48 fmt.Println(reg.End())49 fmt.Println()50}
End
Using AI Code Generation
1import (2func main() {3 rand.Seed(time.Now().UnixNano())4 r.SetObserved("Y")5 r.SetVar(0, "X")6 for x := 0.0; x < 10; x++ {7 y := x + rand.Float64()*28 r.Train(regression.DataPoint(y, []float64{x}))9 }10 r.Run()11 fmt.Printf("\nRegression Formula:\n%v\n", r.Formula)12 fmt.Printf("\nR2: %v\n", r.R2)13}
End
Using AI Code Generation
1import (2func main() {3 x := []float64{1, 2, 3, 4, 5}4 y := []float64{1, 2, 3, 4, 5}5 reg := stat.LinearRegression{}6 reg.Fit(x, y, nil, false)7 fmt.Printf("intercept: %f slope: %f\n", reg.Intercept, reg.Slope)8 fmt.Println(reg.Predict([]float64{6}))9}
End
Using AI Code Generation
1import (2func main() {3 r := new(regression.Regression)4 r.Train(regression.Data{5 {X: []float64{1}, Y: 2},6 {X: []float64{2}, Y: 4},7 {X: []float64{3}, Y: 6},8 {X: []float64{4}, Y: 8},9 })10 r.Run()11 fmt.Printf("Regression formula:\n%v\n", r.Formula)12 fmt.Printf("Predicted value for X=5: %v\n", r.Predict([]float64{5}))13}
End
Using AI Code Generation
1import (2func main() {3 r.SetObserved("Y")4 r.SetVar(0, "X")5 r.Train(regression.DataPoint(1, []float64{1}, []string{"X"}))6 r.Train(regression.DataPoint(2, []float64{2}, []string{"X"}))7 r.Train(regression.DataPoint(3, []float64{3}, []string{"X"}))8 r.Train(regression.DataPoint(4, []float64{4}, []string{"X"}))9 r.Train(regression.DataPoint(5, []float64{5}, []string{"X"}))10 r.Run()11 for x := 1.0; x <= 5.0; x++ {12 fmt.Printf("x = %.2f, predicted y = %2.f\n", x, r.End([]float64{x}))13 }14}
Check out the latest blogs from LambdaTest on this topic:
I routinely come across test strategy documents when working with customers. They are lengthy—100 pages or more—and packed with monotonous text that is routinely reused from one project to another. Yawn once more— the test halt and resume circumstances, the defect management procedure, entrance and exit criteria, unnecessary generic risks, and in fact, one often-used model replicates the requirements of textbook testing, from stress to systems integration.
Enterprise resource planning (ERP) is a form of business process management software—typically a suite of integrated applications—that assists a company in managing its operations, interpreting data, and automating various back-office processes. The introduction of a new ERP system is analogous to the introduction of a new product into the market. If the product is not handled appropriately, it will fail, resulting in significant losses for the business. Most significantly, the employees’ time, effort, and morale would suffer as a result of the procedure.
Hola Testers! Hope you all had a great Thanksgiving weekend! To make this time more memorable, we at LambdaTest have something to offer you as a token of appreciation.
How do we acquire knowledge? This is one of the seemingly basic but critical questions you and your team members must ask and consider. We are experts; therefore, we understand why we study and what we should learn. However, many of us do not give enough thought to how we learn.
With the change in technology trends, there has been a drastic change in the way we build and develop applications. It is essential to simplify your programming requirements to achieve the desired outcomes in the long run. Visual Studio Code is regarded as one of the best IDEs for web development used by developers.
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!