How to use Histogram method of diff Package

Best Got code snippet using diff.Histogram

metric_diff.go

Source:metric_diff.go Github

copy

Full Screen

...98 case pdata.MetricDataTypeSum:99 diffs = diff(diffs, expected.Sum().IsMonotonic(), actual.Sum().IsMonotonic(), "Sum IsMonotonic")100 diffs = diff(diffs, expected.Sum().AggregationTemporality(), actual.Sum().AggregationTemporality(), "Sum AggregationTemporality")101 diffs = diffNumberPts(diffs, expected.Sum().DataPoints(), actual.Sum().DataPoints())102 case pdata.MetricDataTypeHistogram:103 diffs = diff(diffs, expected.Histogram().AggregationTemporality(), actual.Histogram().AggregationTemporality(), "Histogram AggregationTemporality")104 diffs = diffHistogramPts(diffs, expected.Histogram().DataPoints(), actual.Histogram().DataPoints())105 }106 return diffs107}108func diffMetricDescriptor(109 diffs []*MetricDiff,110 expected pdata.Metric,111 actual pdata.Metric,112) ([]*MetricDiff, bool) {113 diffs = diff(diffs, expected.Name(), actual.Name(), "Metric Name")114 diffs = diff(diffs, expected.Description(), actual.Description(), "Metric Description")115 diffs = diff(diffs, expected.Unit(), actual.Unit(), "Metric Unit")116 return diffValues(diffs, expected.DataType(), actual.DataType(), "Metric Type")117}118func diffNumberPts(119 diffs []*MetricDiff,120 expected pdata.NumberDataPointSlice,121 actual pdata.NumberDataPointSlice,122) []*MetricDiff {123 var mismatch bool124 diffs, mismatch = diffValues(diffs, expected.Len(), actual.Len(), "NumberDataPointSlice len")125 if mismatch {126 return diffs127 }128 for i := 0; i < expected.Len(); i++ {129 diffs, mismatch = diffValues(diffs, expected.At(i).ValueType(), actual.At(i).ValueType(), "NumberDataPoint Value Type")130 if mismatch {131 return diffs132 }133 switch expected.At(i).ValueType() {134 case pdata.MetricValueTypeInt:135 diffs = diff(diffs, expected.At(i).IntVal(), actual.At(i).IntVal(), "NumberDataPoint Value")136 case pdata.MetricValueTypeDouble:137 diffs = diff(diffs, expected.At(i).DoubleVal(), actual.At(i).DoubleVal(), "NumberDataPoint Value")138 }139 diffExemplars(diffs, expected.At(i).Exemplars(), actual.At(i).Exemplars())140 }141 return diffs142}143func diffHistogramPts(144 diffs []*MetricDiff,145 expected pdata.HistogramDataPointSlice,146 actual pdata.HistogramDataPointSlice,147) []*MetricDiff {148 var mismatch bool149 diffs, mismatch = diffValues(diffs, expected.Len(), actual.Len(), "HistogramDataPointSlice len")150 if mismatch {151 return diffs152 }153 for i := 0; i < expected.Len(); i++ {154 diffs = diffDoubleHistogramPt(diffs, expected.At(i), actual.At(i))155 }156 return diffs157}158func diffDoubleHistogramPt(159 diffs []*MetricDiff,160 expected pdata.HistogramDataPoint,161 actual pdata.HistogramDataPoint,162) []*MetricDiff {163 diffs = diff(diffs, expected.Count(), actual.Count(), "HistogramDataPoint Count")164 diffs = diff(diffs, expected.Sum(), actual.Sum(), "HistogramDataPoint Sum")165 diffs = diff(diffs, expected.BucketCounts(), actual.BucketCounts(), "HistogramDataPoint BucketCounts")166 diffs = diff(diffs, expected.ExplicitBounds(), actual.ExplicitBounds(), "HistogramDataPoint ExplicitBounds")167 // todo LabelsMap()168 return diffExemplars(diffs, expected.Exemplars(), actual.Exemplars())169}170func diffExemplars(171 diffs []*MetricDiff,172 expected pdata.ExemplarSlice,173 actual pdata.ExemplarSlice,174) []*MetricDiff {175 var mismatch bool176 diffs, mismatch = diffValues(diffs, expected.Len(), actual.Len(), "ExemplarSlice len")177 if mismatch {178 return diffs179 }180 for i := 0; i < expected.Len(); i++ {...

Full Screen

Full Screen

histogram.go

Source:histogram.go Github

copy

Full Screen

...11 "chromiumos/tast/local/chrome/metrics"12 "chromiumos/tast/testing"13)14// WasHWAccelUsed returns whether HW acceleration is used for certain action.15// initHistogram is the histogram obtained before the action.16// successValue is the bucket value of HW acceleration success case.17// Note that it returns true even if more than one successful count is observed.18// It is because in some cases, we occassionally observed more than one19// successful count (crbug.com/985068). To prevent it from reporting false20// negative result, we relax the condition from successful count == 1 to >= 1,21// regardless it may introuce some false positive result.22// TODO(crbug.com/985068#c5): follow up the improvement plan.23func WasHWAccelUsed(ctx context.Context, tconn *chrome.TestConn, initHistogram *metrics.Histogram, histogramName string, successValue int64) (bool, error) {24 // There are three valid cases.25 // 1. No histogram is updated. This is the case if HW Acceleration is disabled due to Chrome flag, ex. --disable-accelerated-video-decode.26 // 2. Histogram is updated with 15. This is the case if Chrome tries to initailize HW Acceleration but it fails because the codec is not supported on DUT.27 // 3. Histogram is updated with 0. This is the case if Chrome sucessfully initializes HW Acceleration.28 // err is not nil here if HW Acceleration is disabled and then Chrome doesn't try HW Acceleration initialization at all.29 // For the case 1, we pass a short time context to WaitForHistogramUpdate to avoid the whole test context (ctx) from reaching deadline.30 histogramDiff, err := metrics.WaitForHistogramUpdate(ctx, tconn, histogramName, initHistogram, 15*time.Second)31 if err != nil {32 // This is the first case; no histogram is updated.33 return false, nil34 }35 testing.ContextLogf(ctx, "Got update to %s histogram: %s", histogramName, histogramDiff)36 if len(histogramDiff.Buckets) > 1 {37 return false, errors.Wrapf(err, "unexpected histogram update: %v", histogramDiff)38 }39 diff := histogramDiff.Buckets[0]40 hwAccelUsed := diff.Min == successValue && diff.Max == successValue+1 && diff.Count >= 141 if !hwAccelUsed {42 testing.ContextLogf(ctx, "Histogram update: %s, if HW accel were used, it should be [[%d, %d) 1]", histogramDiff, successValue, successValue+1)43 } else if diff.Count > 1 {44 testing.ContextLog(ctx, "Note that more than one successful count is observed: ", diff.Count)45 }46 return hwAccelUsed, nil47}

Full Screen

Full Screen

Histogram

Using AI Code Generation

copy

Full Screen

1import (2func main() {3 rand.Seed(time.Now().UnixNano())4 canvas := svg.New(os.Stdout)5 canvas.Start(w, h)6 canvas.Rect(0, 0, w, h, "fill:white")7 canvas.Gstyle("fill:none;stroke:blue;stroke-width:2")8 canvas.Line(0, h/2, w, h/2)9 canvas.Line(w/2, 0, w/2, h)10 canvas.Gend()11 canvas.Gstyle("fill:none;stroke:red;stroke-width:2")12 for i = 0; i < 100000; i++ {13 x = x + rand.NormFloat64()14 y = y + rand.NormFloat64()15 canvas.Line(w/2+x, h/2+y, w/2+x+1, h/2+y+1)16 }17 canvas.Gend()18 canvas.End()19}20import (21func main() {22 rand.Seed(time.Now().UnixNano())23 fmt.Printf("<rect x='0' y='0' width='%d' height='%d' fill='white'/>", w, h)24 fmt.Printf("<g style='fill:none;stroke:blue;stroke-width:2'>")25 fmt.Printf("<line x1='0' y1='%d' x2='%d' y2='%d'/>", h/2, w, h/2)26 fmt.Printf("<line x1='%d' y1='0' x2='%d' y2='%d'/>", w/2, w/2, h)27 fmt.Printf("</g>")28 fmt.Printf("<g style='fill:none;stroke:red;stroke-width:2'>

Full Screen

Full Screen

Histogram

Using AI Code Generation

copy

Full Screen

1import (2func main() {3 rand.Seed(time.Now().UnixNano())4 canvas = svg.New(os.Stdout)5 canvas.Start(600, 400)6 canvas.Rect(0, 0, 600, 400, "fill:white")7 canvas.Gstyle("font-family:Verdana;font-size:12px")8 canvas.Text(10, 20, "Histogram", "fill:black")9 canvas.Gend()10 canvas.Gstyle("fill:steelblue;stroke-width:3;stroke:rgb(0,0,0)")11 h := make([]int, 10)12 for i := 0; i < 1000; i++ {13 h[rand.Intn(10)]++14 }15 canvas.Histogram(50, 50, 500, 300, h)16 canvas.Gend()17 canvas.End()18}19import (20func main() {21 rand.Seed(time.Now().UnixNano())22 canvas = svg.New(os.Stdout)23 canvas.Start(600, 400)24 canvas.Rect(0, 0, 600, 400, "fill:white")25 canvas.Gstyle("font-family:Verdana;font-size:12px")26 canvas.Text(10, 20, "Histogram", "fill:black")27 canvas.Gend()28 canvas.Gstyle("fill:steelblue;stroke-width:3;stroke:rgb(0,0,0)")29 h := make([]int, 10)30 for i := 0; i < 1000; i++ {31 h[rand.Intn(10)]++32 }33 canvas.Histogram(50, 50, 500, 300, h)34 canvas.Gend()35 canvas.End()36}37import (38func main() {39 rand.Seed(time.Now().UnixNano())40 canvas = svg.New(os.Stdout)41 canvas.Start(600

Full Screen

Full Screen

Histogram

Using AI Code Generation

copy

Full Screen

1import (2func main() {3 if len(os.Args) == 2 {4 if width, err = strconv.Atoi(os.Args[1]); err != nil {5 fmt.Println("Invalid width")6 os.Exit(1)7 }8 } else {9 }10 canvas := svg.New(os.Stdout)11 canvas.Start(width, height)12 canvas.Rect(0, 0, width, height, "fill:rgb(255,255,255)")13 canvas.Gstyle("fill:rgb(255,0,0);stroke-width:3;stroke:rgb(0,0,0)")14 canvas.Translate(0, height)15 canvas.Line(0, 0, width, 0)16 canvas.Line(0, 0, 0, -height)17 canvas.Gend()18 canvas.Gstyle("fill:rgb(0,0,0);stroke-width:3;stroke:rgb(0,0,0)")19 canvas.Translate(0, 0)20 d := new(diff)21 rand.Seed(42)22 for i := 0; i < 1000; i++ {23 a[i] = rand.Intn(1000)24 }25 d.Histogram(a[:], 100, width-20, height-20, width-10, 10, canvas)26 canvas.Gend()27 canvas.End()28}29import (30func main() {31 if len(os.Args) == 2 {32 if width, err = strconv.Atoi(os.Args[1]); err != nil {33 fmt.Println("Invalid width")34 os.Exit(1)35 }36 } else {37 }38 canvas := svg.New(os.Stdout)

Full Screen

Full Screen

Histogram

Using AI Code Generation

copy

Full Screen

1import (2func main() {3 fmt.Println("Enter the number of elements in the array")4 fmt.Scanln(&a)5 arr := make([]int, a)6 fmt.Println("Enter the elements in the array")7 for i = 0; i < a; i++ {8 fmt.Scanln(&arr[i])9 }10 fmt.Println("Enter the number of classes")11 fmt.Scanln(&b)12 arr2 := make([]int, b)13 fmt.Println("Enter the elements in the class")14 for i = 0; i < b; i++ {15 fmt.Scanln(&arr2[i])16 }17 fmt.Println("Enter the upper and lower limit")18 fmt.Scanln(&c, &d)19 e = (c - d) / b20 fmt.Println("The class interval is", e)21 f = int(math.Ceil(float64(c) / float64(e)))22 g = int(math.Floor(float64(d) / float64(e)))23 fmt.Println("The upper and lower limit of the class is", f, g)24 arr3 := make([]int, b)25 for i = 0; i < a; i++ {26 if arr[i] <= f && arr[i] >= g {27 } else {28 }29 }30 fmt.Println("The frequency distribution is")31 for i = 0; i < b; i++ {32 fmt.Println(g, "to", f, "is", arr3[i])33 }34 for i = 0; i < b; i++ {35 }36 fmt.Println("The total number of elements is", h)37 for j = 0; j < b; j++ {38 }39 fmt.Println("The mean is", i/h)40}

Full Screen

Full Screen

Histogram

Using AI Code Generation

copy

Full Screen

1import (2type diff struct {3}4func newDiff() *diff {5 return &diff{}6}7func (d *diff) Add(x float64) {8 d.data = append(d.data, x)9}10func (d *diff) Mean() float64 {11 if len(d.data) == 0 {12 return math.NaN()13 }14 for _, x := range d.data {15 }16 return sum / float64(len(d.data))17}18func (d *diff) Variance() float64 {19 if len(d.data) == 0 {20 return math.NaN()21 }22 mean := d.Mean()23 for _, x := range d.data {24 sum += (x - mean) * (x - mean)25 }26 return sum / float64(len(d.data))27}28func (d *diff) StdDev() float64 {29 return math.Sqrt(d.Variance())30}31func (d *diff) Histogram() map[float64]int {32 if len(d.data) == 0 {33 }34 sort.Float64s(d.data)35 min = math.Inf(1)36 max = math.Inf(-1)37 for _, x := range d.data {38 if x < min {39 }40 if x > max {41 }42 }43 binSize := (max - min) / numBins44 bins := make(map[float64]int)45 for _, x := range d.data {46 bin := min + binSize*math.Floor((x-min)/binSize)47 }48}49func main() {50 rand.Seed(time.Now().UnixNano())51 d := newDiff()52 for i := 0; i < 1000; i++ {53 d.Add(rand.NormFloat64())54 }55 fmt.Printf("mean: %f56", d.Mean())57 fmt.Printf("stddev: %f58", d.StdDev())59 fmt.Printf("histogram: %v60", d.Histogram())61}

Full Screen

Full Screen

Histogram

Using AI Code Generation

copy

Full Screen

1import (2func main() {3 h := NewHistogram()4 h.Add(1)5 h.Add(1)6 h.Add(1)7 h.Add(1)8 h.Add(2)9 h.Add(2)10 h.Add(2)11 h.Add(3)12 h.Add(3)13 h.Add(4)14 h.Add(4)15 h.Add(4)16 h.Add(4)17 h.Add(5)18 h.Add(5)19 h.Add(5)20 h.Add(5)21 h.Add(5)22 h.Add(6)

Full Screen

Full Screen

Histogram

Using AI Code Generation

copy

Full Screen

1import (2func diffImage(img1 gocv.Mat, img2 gocv.Mat) gocv.Mat {3 diff := gocv.NewMat()4 gocv.AbsDiff(img1, img2, &diff)5}6func histogram(img gocv.Mat) gocv.Mat {7 hist := gocv.NewMat()8 gocv.CalcHist([]gocv.Mat{img}, []int{0}, gocv.NewMat(), &hist, []int{256}, []float32{0, 256}, false)9}10func similarity(img1 gocv.Mat, img2 gocv.Mat) float64 {11 diff := diffImage(img1, img2)12 hist := histogram(diff)13 for i := 0; i < hist.Rows(); i++ {14 sum += hist.GetFloatAt(i, 0)15 }16 sim := (1 - (sum / float64(diff.Rows()*diff.Cols()))) * 10017}18func main() {19 img1, err := gocv.IMRead("images/1.jpg", gocv.IMReadGrayScale)20 if err != nil {21 log.Fatalf("error reading image from file: %v", err)22 }23 defer img1.Close()24 img2, err := gocv.IMRead("images/2

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful